Four beakers containing potassium nitrate dissolved in water are allowed to evaporate to dryness. Beakers 1 through 4 contain 2.3, 1.91, 5.985, and 0.52 g of dry potassium nitrate respectively. How many moles of potassium nitrate were recovered after the water evaporated?

Answers

Answer 1
Answer:

Explanation:

Molar mass of potassium nitrate will be calculated as follows.

   Molar mass KNO_(3) = molar mass of K + molar mass of N + 3 × molar mass of O

                             = 39.098 g/mol + 14.006 g/mol + 3 × 15.999 g/mol

                             = 102.102 g/mol

Now, adding the given amount of potassium nitrate present in each beaker as follows.

               (2.3 + 1.91 + 5.985 + 0.52) g

               = 10.715 g

Therefore, calculate number of moles as follows.

                   No. of moles = \frac{mass}{\text{molar mass}}

                                         = (10.715 g)/(102.102 g/mol)

                                         = 0.105 mol

Thus, we can conclude that 0.105 moles of potassium nitrate were recovered after the water evaporated.


Related Questions

The voltage generated by the zinc concentration cell described by, zn(s)|zn2 (aq, 0.100 m)||zn2 (aq, ? m)|zn(s),is 16.0 mv at 25 °c. calculate the concentration of the zn2 (aq) ion at the cathode.
Is it possible for three or more elements to form a solid solution? Explain your answer.
Which process is used to make lime (calcium oxide) from limestone (calcium carbonate)?​
A solution contains 0.10 M Pb2+ and 0.10 M Cu2.. Which cation will precipitate first when a solution of NazS is slowly added to the mixture? Refer to the information sheet for solubility constants. P A) Pb2+ B) Cu2+ C) impossible to tell D) both cations
Consider the titration of 30 mL of 0.030 M NH3 with 0.025 M HCl. Calculate the pH after the following volumes of titrant have been added: a) 0 mL; b) 10 mL; c) 20 mL; d)35 mL; e) 36 mL; f) 37 mL.

Which particles are equal in number for an atom with a neutral charge? ​

Answers

electrons and protons

Write the balanced reaction and solubility product expression (KSP) for dissolving silver chromate: Ag2CrO4(s). Include all charges, stoichiometric coefficients, and phase subscripts.

Answers

Answer:

2Ag⁺ (aq)  + CrO₄⁻² (aq) ⇄  Ag₂CrO₄ (s) ↓

Ksp = [2s]²  . [s] → 4s³

Explanation:

Ag₂CrO₄ → 2Ag⁺  + CrO₄⁻²

Chromate silver is a ionic salt that can be dissociated. When we have a mixture of both ions, we can produce the salt which is a precipitated.

2Ag⁺ (aq)  + CrO₄⁻² (aq) ⇄  Ag₂CrO₄ (s) ↓ Ksp

That's the expression for the precipitation equilibrium.

To determine the solubility product expression, we work with the Ksp

Ag₂CrO₄ (s)  ⇄ 2Ag⁺ (aq)  + CrO₄⁻² (aq)   Ksp

                          2 s                 s

Look the stoichiometry is 1:2, between the salt and the silver.

Ksp = [2s]²  . [s] → 4s³

 

Which description best characterization the motion of particles in a solid

Answers

Answer:

D) Vibrating in fixed position

Explanation:

just took it on edge 2020

Are there any choices? Because from what the question is it seems like we need choices to help

1. (a) What name is given to the law describing the relationship between volume and pressure at constant temperature? Write a mathematical expression that describes this relationship. (2 marks)(b) Sketch a graph of the relationship described in part (a).

Answers

Explanation:

a)Boyle's law states that pressure is inversely proportional to the volume of the gas at constant temperature.  

Pressure\propto (1)/(Volume) (At constant temperature)

The equation given by this law is:

PV=k

P_1V_1=P_2V_2

where,

P_1\text{ and }V_1 are initial pressure and volume respectively.

P_2\text{ and }V_2 are final pressure and volume respectively.

b) A graph of the relationship is attached as an image.

Increasing which factor will cause the gravitational force between two objects to decrease?weights of the objects
distance between the objects
acceleration of the objects
masses of the objects

Answers

Increasing distance between the objects factor will cause the gravitational force between two objects to decrease. Therefore, option B is correct.

What causes gravitational force to decrease?

The gravitational force grows in proportion to the size of the masses . The gravitational force weakens rapidly as the distance between masses grows. Unless at least one of the objects has a lot of mass, detecting gravitational force is extremely difficult.

Gravity is affected by object size and distance between objects. Mass is a unit of measurement for the amount of matter in an object.

The force of gravity is proportional to the masses of the two objects and inversely proportional to the square of the distance between them. This means that the force of gravity increases with mass but decreases as the distance between objects increases.

Thus, option B is correct.

To learn more about the gravitational force, follow the link;

brainly.com/question/12528243

#SPJ6

Answer:

B

Explanation:

Consider the generic chemical equation below. X + Ymc021-1.jpg W + Z Reactant X contains 199.3 J of chemical energy. Reactant Y contains 272.3 J of chemical energy. Product W contains 41.9 J of chemical energy. If the reaction loses 111.6 J of chemical energy as it proceeds, how much chemical energy must product Z contain?

Answers

The reaction is:

X + Y → W + Z

Chemical energy of reactant X = 199.3 J = Ux

Chemical energy of reactant Y = 272.3 J = Uy

Chemical energy of Product W = 41.9 J = Uw

Chemical energy of Product Z = ? = Uz

Where reaction loses energy = 111.6 J = ΔU

By using the equation:

(Ux + Uy) – (Uw + Uz) = ΔU

Ux + Uy – Uw – Uz = ΔU

Uz = Ux + Uy – Uw –ΔU

Uz = 199.3 + 272.3 – 41.9 – 111.6

Uz = 318.1 J

Product Z must contain 318.1 J chemical energy.

Answer:

person above me is correct

Explanation: