Answer:
The magnitude and direction of the magnetic field is 0.009014 T in the negative y direction.
Explanation:
Given that,
Speed
Acceleration
We need to calculate the magnetic field
Using formula of magnetic field
....(I)
Using newton's second law
....(II)
From equation (I) and (II)
Put the value into the formula
We need to calculate the direction of the field
Using the right hand rule, point the right hand fingers along the velocity which is in the positive z direction.
Now, if we curl the fingers along the direction of magnetic field that is in the negative y direction, then the thumb will point in the positive x direction.
Hence, The magnitude and direction of the magnetic field is 0.009014 T in the negative y direction.
Answer:
a) W = 25.872 J
b) - 35.28 J
c) - 9.408
Explanation:
a) The amount of work done by the force of gravity on the ball = Change in potential energy between the two vertical points = - mg (H₂ - H₁)
F = - mg (gravity is acting downwards)
F = - 0.6 × 9.8 = - 5.88 N
(H₂ - H₁) = (1.6 - 6) = - 4.4 m
W = (-5.88)(-4.4) = 25.872 J
b) Gravitational-potential energy of the ball when it was released relative to the ground = (- mg) H₁ = (- 0.6 × 9.8) × 6 = - 35.28 J
c) Gravitational-potential energy of the ball when it is caught relative to the ground = (-mg)(H₂) = -0.6 × 9.8 × 1.6 = - 9.408 J
Answer:
The current would be same in both situation.
Explanation:
Given that,
Current I = 13 A
Number of turns = 23
We need to calculate the induced emf
Using formula of induced emf is
For N = 1
We need to calculate the current
Using formula of current
Put the value of emf
Now, if the number of turn is 22 , then induced emf would be
Then the current would be
Hence, The current would be same in both situation.
B. Z
C. X
D. W
The object with the least inertia is Z.
option B is the correct answer.
Newton's first law of motion states that an object at rest or uniform motion in a straight line will continue in that path unless it is acted upon by an external force and it will move in the direction of applied force.
The Newton's first law of motion is also called the law of inertia because it depends on the mass of the object.
Inertia is defined as the reluctancy of an object to move when a force is applied to it.
As the mass of an object increase, the inertia of the object increases because the object will be more reluctant to move when a force is applied to it.
Thus, the more massive an object is, the greater the object's inertia and vice versa.
Learn more about inertia here: brainly.com/question/1140505
#SPJ1
0.46Ω
The electromotive force (E) in the circuit is related to the terminal voltage(V), of the circuit and the internal resistance (r) of the battery as follows;
E = V + Ir --------------------(a)
Where;
I = current flowing through the circuit
But;
V = I x Rₓ ---------------------(b)
Where;
Rₓ = effective or total resistance in the circuit.
First, let's calculate the effective resistance in the circuit:
The effective resistance (Rₓ) in the circuit is the one due to the resistances in the two lightbulbs.
Let;
R₁ = resistance in the first bulb
R₂ = resistance in the second bulb
Since the two bulbs are both rated at 4.0W ( at 12.0V), their resistance values (R₁ and R₂) are the same and will be given by the power formula;
P =
=> R = -------------------(ii)
Where;
P = Power of the bulb
V = voltage across the bulb
R = resistance of the bulb
To get R₁, equation (ii) can be written as;
R₁ = --------------------------------(iii)
Where;
V = 12.0V
P = 4.0W
Substitute these values into equation (iii) as follows;
R₁ =
R₁ =
R₁ = 36Ω
Following the same approach, to get R₂, equation (ii) can be written as;
R₂ = --------------------------------(iv)
Where;
V = 12.0V
P = 4.0W
Substitute these values into equation (iv) as follows;
R₂ =
R₂ =
R₂ = 36Ω
Now, since the bulbs are connected in parallel, the effective resistance (Rₓ) is given by;
= + -----------------(v)
Substitute the values of R₁ and R₂ into equation (v) as follows;
= +
=
Rₓ =
Rₓ = 18Ω
The effective resistance (Rₓ) is therefore, 18Ω
Now calculate the current I, flowing in the circuit:
Substitute the values of V = 11.7V and Rₓ = 18Ω into equation (b) as follows;
11.7 = I x 18
I =
I = 0.65A
Now calculate the battery's internal resistance:
Substitute the values of E = 12.0, V = 11.7V and I = 0.65A into equation (a) as follows;
12.0 = 11.7 + 0.65r
0.65r = 12.0 - 11.7
0.65r = 0.3
r =
r = 0.46Ω
Therefore, the internal resistance of the battery is 0.46Ω
Answer:
Explanation:
Internal resistance is a concept that helps model the electrical consequences of the complex chemical reactions that occur within a battery. When a charge is applied to a battery, the internal resistance can be calculated using the following equation:
Where:
As you can see, we don't know the exactly value of the . However we can calculated that value using the next simple operations:
The problem tell us that the power of each lightbulb is 4.0 W at 12.0 V, hence let's calculated the power at 11.7V using Cross-multiplication:
Solving for :
Now, the electric power is given by:
Where:
So:
Now, because of the lightbulbs are connected in parallel the equivalent resistance is given by:
Finally, now we have all the data, let's replace it into the internal resistance equation:
Answer:
Breaths per minute is a frequency. The period is its reciprocal.
Explanation:
In simple harmonic motion, a period (T) is the time taken for one point to start in a position and reach that position again, in other words to complete a cycle or lapse. In this case, a period is the time one takes from starting to inspire the air to releasing all of it from the lungs.
In simple harmonic motion, the frequency (f) is how many times a point completes a cycle or lapse in one unity of time (could be one second, one minute, one hour, etc). In this case, the frequency is how many times one breathes in one minute. This is the breathing rate, since it is breathings per minute. Breaths per minute is a frequency.
Period (T) and frequency (f) relate to each other in the following formulae: or .
Therefore, breaths per minute is a frequency, and since it is related to the period, we say the period is reciprocal to it.
B) is 0.21 km/s.
C) is 65 m/s.
D) is 9.3 m/s.
E) None of these is correct
Answer:
Explanation:
Using the law of conservation of momentum to solve the problem. According to the law, the sum of momentum of the bodies before collision is equal to the sum of the bodies after collision. The bodies move with the same velocity after collision.
Mathematically.
mu + MU = (m+M)v
m and M are the masses of the bullet and the block respectively
u and U are their respective velocities
v is their common velocity
from the question, the following parameters are given;
m = 20g = 0.02kg
u = 960m/s
M = 4.5kg
U =0m/s (block is at rest)
Substituting this values into the formula above to get v;
0.02(960)+4.5(0) = (0.02+4.5)v
19.2+0 = 4.52v
4.52v = 19.2
Dividing both sides by 4.52
4.52v/4.52 = 19.2/4.52
v = 4.25m/s
Since they have the same velocity after collision, then the speed of the block immediately after the collision is also 4.25m/s