Answer:
will be not soluble in water
Explanation:
LiOH is a strong base. Hence it gets completely dissociated in aqueous solution.
is a strong electrolyte. Hence it gets completely dissociated in aqueous solution.
is a strong electrolyte. Hence it gets completely dissociated in aqueous solution.
is a strong electrolyte. Hence it gets completely dissociated in aqueous solution.
is a sparingly soluble salt. Hence it is not dissociated and hence dissolved in water. This is due to the fact that both and ions are similar in size. Hence crystal structure of is quite stable. Hence is reluctant to undergo any dissociation in aqueous solution.
Answer:
The answers indicate that wavelength is inversely proportional to the energy of light (photon)
Explanation:
Energy of photon E = hc/λ
where;
h is Planck's constant = 6.626 X 10⁻³⁴js
c is the speed of light (photon) = 3 X 10⁸ m/s
λ is the wavelength of the photon
⇒For ultraviolet ray, with wavelength λ = 1 x 10⁻⁸ m
E = (6.626 X 10⁻³⁴ X 3 X 10⁸)/ (1 x 10⁻⁸)
E = 19.878 10⁻¹⁸ J
⇒For Visible light, with wavelength λ = 5 x 10⁻⁷ m
E = (6.626 X 10⁻³⁴ X 3 X 10⁸)/ (5 x 10⁻⁷)
E = 3.9756 X 10⁻¹⁹ J
⇒For Infrared, with wavelength λ = 1 x 10⁴ m
E = (6.626 X 10⁻³⁴ X 3 X 10⁸)/ (1 x 10⁴)
E = 19.878 X 10⁻³⁰ J
From the result above, ultraviolet ray has the shortest wavelength, but it has the highest energy among other lights.
Also infrared has the highest wavelength but the least energy among other lights.
Hence, wavelength is inversely proportional to the energy of light (photon).
After 100years, sample is 250g
After 200 years, sample is 125g
After 300years, sample is 62.5 g
Answer:
Option (A) saturated and is at equilibrium with the solid KCl
Explanation:
A saturated solution is a solution which can not dissolve more solute in the solution.
From the question given above, we can see that the solution is saturated as it can not further dissolve any more KCl as some KCl is still visible in the flask.
Equilibrium is attained in a chemical reaction when there is no observable change in the reaction system with time. Now, observing the question given we can see that there is no change in flask as some KCl is still visible even after thorough shaking. This simply implies that the solution is in equilibrium with the KCl solid as no further dissolution occurs.
b. secondary.
c. tertiary.
d. quaternary .
The specific spatial arrangement of amino acid residues that are close to each other in the polypeptide chain is called the tertiarystructure of a protein.
Protein structure is three dimensional in shape, where the atoms are arranged in amino acid chain. The chain is polypeptide containing many amino acid sequences.
The tertiary structure have a single polypeptide chain which is called the backbone.
Therefore, the specific spatial arrangement of amino acid residues that are close to each other in the polypeptide chain is called the tertiarystructure of a protein.
Learn more on protein structure here,
Answer:
c. tertiary.
Explanation:
In this case, we can review the definition of each level of structuration in the proteins:
Primary structure
In the primary structure, the amino acids are linked by peptide bonds. That is, the order of the amino acids is the criterion that defines this type of structure.
Secondary structure
In the secondary structure, we have to look at the way in which the protein is folded. The options are:
-) Beta-laminar: A structure in which the protein has a planar shape.
-) Alpha-helix: A structure in which the protein has a cross-strand form.
Tertiary structure
In the tertiary structure, the R groups that the amino acids have in the primary structure can generate interactions with each other. Interactions such as hydrogen bridges, dipole-dipole, hydrophobic interactions. This makes the protein have a very specific three-dimensional structure, on which its function depends.
Quaternary structure
In the quaternary structure, several subunits may be attached, or there may be prostatic groups (metals that can help to attach various protein units).
With all these in mind, the deffinition that fits with the description in the question is the tertiary structure.
I hope it helps!
Answer:
Multiply the subscripts of the empirical formula by the value of the ratio of the molar mass of the compound to the empirical molar mass of the compound.
Explanation:
got it right on edge 2020 :)
Answer:
Multiply the subscripts of the empirical formula by the value of the ratio of the molar mass of the compound to the empirical molar mass of the compound.
Explanation:
Explanation:
a)Boyle's law states that pressure is inversely proportional to the volume of the gas at constant temperature.
(At constant temperature)
The equation given by this law is:
where,
are initial pressure and volume respectively.
are final pressure and volume respectively.
b) A graph of the relationship is attached as an image.