When the cart arrives at any place that's 1.0 meter higher than where it started, its potential energy will be
(9.8) · (its mass on kilograms) Joules .
Potential Energy is given by the formula mass x gravity x height. The starting height is irrelevant in its calculation. The potential energy depends on the mass of the object, gravity and the elevated height.
The potential energy of an object is calculated by the formula Potential Energy = mass x gravity x height. Whenever the height of an object increases, its potential energy will increase as well provided mass and the gravitational field (g) remain constant. Here, the starting height being 0.0 m is irrelevant to the calculation of potential energy at 1.0 m height. If the mass of the cart and the value of gravity (usually taken as 9.8 m/s2 on Earth's surface) are known, you can substitute those values into the formula to find the potential energy.
e.g. If the mass of the cart was 2 kg, the potential energy at a height of 1.0 m would be 2 kg x 9.8 m/s
2
x 1.0 m = 19.6 joules.
#SPJ3
B) Northern lights are seen at low latitude places like Michigan.
C) The solar wind moves away from Earth towards other planets.
D) The magnetic north and south poles of Earth are interchanged.
Answer: D) The magnetic north and south poles of Earth are interchanged."
Explanation:
B.Direction
C.Speed
D.Velocity
Potential energy or stored energy, and kinetic energy, the energy due to motion can be balanced in the process of converting kinetic energy to potential energy during an uphill motion
The correct option for, which situation shows potential energy and kinetic energy are balanced is option;
A roller coaster car going uphill
The reason the selected option is correct is as follows:
Potential energy is the energy that is due to the relative position of an item in relation to a ground or zero state. The formula for potential energy due to the elevation is given as follows;
Potential energy, P.E. = m·g·h
Kinetic energy is the energy that is due to motion. The kinetic energy of an item is given as follows;
Kinetic energy, K.E. = (1/2) × m × v²
The potential and kinetic energy of a body is balanced when we have;
P.E. = m·g·h = K.E. = (1/2)·m·v²
Which gives;
g·h = (1/2)·v²
Therefore, a point is reached as the an body moves up a heal, where the potential energy (the energy due to height of the object) and the kinetic energy (the energy due to current speed) of the object are equal
The correct situation which shows potential energy and kinetic energy are balanced is therefore; A roller coaster car going uphill
Learn more about potential and kinetic energy here: