Answer:
17 atoms are in 3(SO)4
Explanation:
There are 15 total atoms in
To find the total number of atoms in a chemical formula like 3(SO)4, you need to multiply the subscripts (the numbers outside the parentheses) by the number of atoms represented by each element within the parentheses and then multiply that by the coefficient (the number outside the formula).
In this case, you have:
Now, let's break it down:
The subscript for sulfur (S) is 1.
The subscript for oxygen (O) is 4.
So, for each (SO4) unit, you have 1 sulfur atom and 4 oxygen atoms.
Now, multiply this by the coefficient of 3:
= 3 * (1 sulfur atom + 4 oxygen atoms)
= 3 sulfur atoms + 12 oxygen atoms
So, in , there are a total of 3 sulfur atoms and 12 oxygen atoms, for a combined total of 15 atoms.
#SPJ6
Electron sea model: Electrons all have approximately the same energy.
Band theory: Electrons move among orbitals of different energies.
Both models: Electrons move freely among atoms (delocalized).
is the answer on edgeunuity
In a laboratory synthesis, a student begins with 2.90 mL of acetic anhydride (density=1.08gml−1) and 1.23 g of salicylic acid. Once the reaction is complete, the student collects 1.24 g of aspirin.
1. Determine the theoretical yield of aspirin for the reaction. Express your answer using three significant figures.
2. Determine the percent yield of aspirin for the reaction. Express your answer using three significant figures.
Answer:
1.- Theoretical yield is 1.64 g of aspirin
2.- %Yield is 75.6%
Explanation:
The theoretical yield of aspirin could be calculated by the molar relation between anhydride acetic and salicylic acid which is 1:1. It means that the reaction of one mole of anhydride acetic with one mole of salicylic acid will produce 1 mole of aspirin and one mole of acetic acid.
It is possible to calculated the number of moles using moles=grams/molar mass. in the attached figure we can see the molar mass of each compound.
The number of moles of anhydride acetic can be calculated using the density and the volumen.
g=(1.08 g/mL)*(2.90 mL)=3.13 g of anhydride
moles= 3.13 g/(102.09 g/mol)= 0.031 moles of anhydride acetic
The same for salicylic acid and we have:
moles= 1.23g/ (138.12 g/mol)= 0.0090 moles of salicylic acid
There is not 1:1 relation between this two compounds because there is much more anhydride acetic than salicylic acid, so the reaction is limited by the 0.0090 moles of salicylic acid which produce 0.0090 moles of aspirin.
g= moles*molar mass
Theoretical yield of aspirin= (0.009 moles)*(182.13 g/mol)= 1.64 g
The percent yield of aspirin for the reaction can be calculated using the nex formula:
%yield= ((real yield)/(theoretical yield))*100
The real yield was 1.24 g of aspirin
%Yield=(1.24g/1.64)*100=75.6%
To determine the theoretical yield of aspirin, calculate the moles of acetic anhydride and salicylic acid, use the balanced equation to find the moles of aspirin, and convert to grams. The percent yield is calculated by dividing the actual yield by the theoretical yield and multiplying by 100.
To determine the theoretical yield of aspirin, we need to first calculate the number of moles of acetic anhydride and salicylic acid. Then, we use the balanced equation to find the number of moles of aspirin produced. Finally, we convert the moles of aspirin to grams using its molar mass. The percent yield is calculated by dividing the actual yield by the theoretical yield and multiplying by 100.
Step 1: Calculate the moles of acetic anhydride
2.90 mL × 1.08 g/mL = 3.132 g
Moles of acetic anhydride = mass / molar mass = 3.132 g / 102.09 g/mol = 0.0307 mol
Step 2: Calculate the moles of salicylic acid
Moles of salicylic acid = mass / molar mass = 1.23 g / 138.12 g/mol = 0.0089 mol
Step 3: Use the balanced equation to find the moles of aspirin produced
According to the balanced equation: 1 mol of acetic anhydride reacts with 1 mol of salicylic acid to produce 1 mol of aspirin
Since the moles of acetic anhydride and salicylic acid are the same, the moles of aspirin produced = 0.0089 mol
Step 4: Calculate the theoretical yield of aspirin in grams
The molar mass of aspirin is 180.16 g/mol
Theoretical yield of aspirin = moles of aspirin × molar mass of aspirin = 0.0089 mol × 180.16 g/mol = 1.61 g
Step 5: Calculate the percent yield of aspirin
Percent yield = (actual yield / theoretical yield) × 100
Percent yield = (1.24 g / 1.61 g) × 100 = 77.0%
#SPJ6
What are 10 scientific things that happened in the hunger games