Answer:
picture is not visible....................
Answer:
1.33%
Explanation:
In an aqueous solution, a weak acid such as acetic acid, will be in equilibrium with its conjugate base, acetate ion, thus:
CH₃CO₂H(aq) + H₂O(l) ⇌ H₃O⁺(aq) + CH₃CO₂⁻(aq )
Where dissociation constant, ka, is defined as the ratio of concentrations of products and reactants:
Ka = 1.8x10⁻⁵ = [H₃O⁺] [CH₃CO₂⁻] / [CH₃CO₂H]
H₂O is not taken into account in the equilibrium because is a pure liquid
When a solution of acetic acid becomes to equilibrium, the original concentration of the acid decreases producing more H₃O⁺ and CH₃CO₂⁻.
The concentrations at equilibrium when a 0.100M solution of acetic acid reaches this state, is:
[CH₃CO₂H] = 0.100M - X
[H₃O⁺] = X
[CH₃CO₂⁻] = X
Where X is reaction coordinate.
Replacing in Ka expression:
1.8x10⁻⁵ = [H₃O⁺] [CH₃CO₂⁻] / [CH₃CO₂H]
1.8x10⁻⁵ = [X] [X] / [0.100M - X]
1.8x10⁻⁶ - 1.8x10⁻⁵X = X²
1.8x10⁻⁶ - 1.8x10⁻⁵X - X² = 0
Solving for X:
X = -0.00135 → False solution. There is no negative concentrations.
X = 0.00133 → Right solution.
That means concentration of acetate ion is:
[CH₃CO₂⁻] = 0.00133M.
Now, percent ionization is defined as 100 times the ratio between weak acid that is ionizated, [CH₃CO₂⁻] = 0.00133M, per initial concentration of the acid, [CH₃CO₂H] = 0.100M. Replacing:
% Ionization = 0.00133M / 0.100M × 100 =
True
False
Answer:
True
Explanation:
Answer:
answer is true
Answer:
Ionic Compounds have high boiling and melting points as they're very strong and require a lot of energy to break. The electrostatic forces of attraction between oppositely charged ions lead to the formation of ions. Ionic compounds form crystals. These compounds are brittle and break into small pieces easily.
Explanation:
Subtract the ratio of the actual mass of the compound to the empirical formula mass from the subscripts of the empirical formula.
Divide the ratio of the actual mass of the compound to the empirical formula mass by the subscripts of the empirical formula.
Add the ratio of the actual mass of the compound to the empirical formula mass to the subscripts of the empirical formula.
Answer : Option A) Multiply the ratio of the actual mass of the compound to the empirical formula mass by the subscripts of the empirical formula.
Explanation : To find molecular formula for a compound one needs to follow the below steps using the emphirical formula of that compound.
Step 1) Calculate the empirical formula mass of that compound
Step 2) Take the ratio of gram molecular mass by the empirical formula mass that was obtained in step 1.
Step 3) Multiply each of the subscripts within the empirical formula by the number that is calculated in step 2.
By following these easy steps one can find the molecular formula.
The step that would help a student finds the molecular formula of a compound from the empirical formula is by ‘Multiply the ratio of the actual mass of the compound to the empirical formula mass by the subscripts of the empirical formula.’
Answer:
chromium atomic mass 52.00 atomic number is 24 period 4 group 6 6b
Explanation:
I checked the periodic table hope I helped