the answer is A:
Photosynthesis release O2 (oxygen)
then animals use oxygen for respiration and release Co2
The correct answer is A) Photosynthesis O2 Respiration CO2. Photosynthesis converts CO2 to O2, which is then used in respiration to be converted back into CO2. Both processes together create a continuous cycle.
The correct diagram that represents the cycling of gases between photosynthesis and respiration is A) Photosynthesis O2 Respiration CO2. Through the process of photosynthesis, plants convert carbon dioxide (CO2) and sunlight into oxygen (O2) and glucose. Organisms, including the plants themselves, then use that oxygen for respiration, during which they convert the oxygen back into carbon dioxide. The glucose is used for energy. This continuous cycling plays a critical role in life on Earth.
#SPJ3
Answer:
Boron
Explanation:
Because it has a complete 2s orbital and therefore, an increased shielding of the 2s orbital will reduce the ionisation energy.
Among boron, carbon, aluminum, and silicon, aluminum has the lowest first ionization energy due to its position on the periodic table, which is further to the left and in a higher period than the other elements.
Ionization energy refers to the energy necessary to remove an electron from an atom in its gaseous state. The element with the lowest first ionization energy among boron, carbon, aluminum, and silicon is aluminum. Ionization energy increases from left to right across a period in the periodic table and from bottom to top in a group. Thus, aluminum, being to the left of boron, carbon, and silicon, has the lowest first ionization energy. Furthermore, aluminum is in the third period, which is below boron and carbon's second period.
#SPJ3
We are given:
Mass of NaCl in the given solution = 22.3 grams
Volume of the given solution = 2 L
Number of Moles of NaCl:
We know that the number of moles = Given mass / Molar mass
Number of moles = 22.3 / 58.44 = 0.382 moles
Molarity of NaCl in the Given solution:
We know that Molarity of a solution = Moles of Solute / Volume of Solution(in L)
Molarity = 0.382 / 2
Molarity = 0.191 M
Answer:
1a. The balanced equation is given below:
2NO + O2 → 2NO2
The coefficients are 2, 1, 2
1b. 755.32g of NO2
2a. The balanced equation is given below:
2C6H6 + 15O2 → 12CO2 + 6H2O
The coefficients are 2, 15, 12, 6
2b. 126.25g of CO2
Explanation:
1a. Step 1:
Equation for the reaction. This is given below:
NO + O2 → NO2
1a. Step 2:
Balancing the equation. This is illustrated below:
NO + O2 → NO2
There are 2 atoms of O on the right side and 3 atoms on the left side. It can be balance by putting 2 in front of NO and 2 in front of NO2 as shown below:
2NO + O2 → 2NO2
The equation is balanced.
The coefficients are 2, 1, 2
1b. Step 1:
Determination of the limiting reactant. This is illustrated below:
2NO + O2 → 2NO2
From the balanced equation above, 2 moles of NO required 1 mole of O2.
Therefore, 16.42 moles of NO will require = 16.42/2 = 8.21 moles of O2.
From the calculations made above, there are leftover for O2 as 8.21 moles out of 14.47 moles reacted. Therefore, NO is the limiting reactant and O2 is the excess reactant.
1b. Step 2:
Determination of the maximum amount of NO2 produced. This is illustrated below:
2NO + O2 → 2NO2
From the balanced equation above, 2 moles of NO produced 2 moles of NO2.
Therefore, 16.42 moles of NO will also produce 16.42 moles of NO2.
1b. Step 3:
Conversion of 16.42 moles of NO2 to grams. This is illustrated below:
Molar Mass of NO2 = 14 + (2x16) = 14 + 32 = 46g/mol
Mole of NO2 = 16.42 moles
Mass of NO2 =?
Mass = number of mole x molar Mass
Mass of NO2 = 16.42 x 46
Mass of NO2 = 755.32g
Therefore, the maximum amount of NO2 produced is 755.32g
2a. Step 1:
The equation for the reaction.
C6H6 + O2 → CO2 + H2O
2a. Step 2:
Balancing the equation:
C6H6 + O2 → CO2 + H2O
There are 6 atoms of C on the left side and 1 atom on the right side. It can be balance by 6 in front of CO2 as shown below:
C6H6 + O2 → 6CO2 + H2O
There are 6 atoms of H on the left side and 2 atoms on the right. It can be balance by putting 3 in front of H2O as shown below:
C6H6 + O2 → 6CO2 + 3H2O
There are a total of 15 atoms of O on the right side and 2 atoms on the left. It can be balance by putting 15/2 in front of O2 as shown below:
C6H6 + 15/2O2 → 6CO2 + 3H2O
Multiply through by 2 to clear the fraction.
2C6H6 + 15O2 → 12CO2 + 6H2O
Now, the equation is balanced.
The coefficients are 2, 15, 12, 6
2b. Step 1:
Determination of the mass of C6H6 and O2 that reacted from the balanced equation. This is illustrated below:
2C6H6 + 15O2 → 12CO2 + 6H2O
Molar Mass of C6H6 = (12x6) + (6x1) = 72 + 6 = 78g/mol
Mass of C6H6 from the balanced equation = 2 x 78 = 156g
Molar Mass of O2 = 16x2 = 32g/mol
Mass of O2 from the balanced equation = 15 x 32 = 480g
2b. Step 2:
Determination of the limiting reactant. This is illustrated below:
From the balanced equation above,
156g of C6H6 required 480g of O2.
Therefore, 37.3g of C6H6 will require = (37.3x480)/156 = 114.77g of O2.
From the calculations made above, there are leftover for O2 as 114.77g out of 126.1g reacted. Therefore, O2 is the excess reactant and C6H6 is the limiting reactant.
2b. Step 3:
Determination of mass of CO2 produced from the balanced equation. This is illustrated belowb
2C6H6 + 15O2 → 12CO2 + 6H2O
Molar Mass of CO2 = 12 + (2x16) = 12 + 32 = 44g/mol
Mass of CO2 from the balanced equation = 12 x 44 = 528g
2b. Step 4:
Determination of the mass of CO2 produced by reacting 37.3g of C6H6 and 126.1g O2. This is illustrated below:
From the balanced equation above,
156g of C6H6 produced 528g of CO2.
Therefore, 37.3g of C6H6 will produce = (37.3x528)/156 = 126.25g of CO2
Answer:
When the graduation line denotes the volume contained in the calibrated vessel, the ware is marked “TC”. When the graduation line indicates the volume delivered from the vessel, the ware is marked “TD”.
Answer:
Graham's law of effusion was formulated by Scottish physical chemist Thomas Graham in 1848. Graham found experimentally that the rate of effusion of a gas is inversely proportional to the square root of the mass of its particles. This formula can be written as: , where: Rate₁ is the rate of effusion for the first gas.
Explanation:
r1 = rate of effusion for gas 1
r2 = rate of effusion for gas 2
M1 = molar mass of gas 1
M2 = molar mass of gas 2
a moving randomly
b collide into each other
c move slow
d high kinetic energy
e moving orderly
The gas particlesmove randomly (a), collide into each other (b) and have high kinetic energy (d).
Which of the following best describe gas particles?
a moving randomly.YES. They move in all directions without a predefined path.
b collide into each other.YES. They collide into each other and against the walls of the container they are in.
c move slow.NO. They move very rapidly.
d high kinetic energy.YES. Their high kinetic energy is a consequence of their fast movement.
e moving orderly.NO. They move in a random fashion.
The gas particlesmove randomly (a), collide into each other (b) and have high kinetic energy (d).
You can learn more about gases here: brainly.com/question/11973814
Answer:
a,b,d
Explanation:
Gas particles fill space and do not move in an orderly fashion, and are constantly bumping into each other due to their high kinetic energy.