Explanation:
Density is the mass present in per unit volume.
Mathematically, Density =
Therefore, first calculate the mass of solution as follows.
Density =
1.725 g/mL =
mass = 431.25 g
Now, calculate mass of ammonium nitrate as follows.
Percentage by mass =
75 =
Mass of ammonium nitrate = 323.43 g
Thus, we can conclude that mass of ammonium nitrate is 323.43 g.
Answer:
the initial temperature of the iron sample is Ti = 90,36 °C
Explanation:
Assuming the calorimeter has no heat loss to the surroundings:
Q w + Q iron = 0
Also when the T stops changing means an equilibrium has been reached and therefore, in that moment, the temperature of the water is the same that the iron ( final temperature of water= final temperature of iron = T )
Assuming Q= m*c*( T- Tir)
mc*cc*(T-Tc)+mir*cir*(T - Tir) = 0
Tir = 20.3 °C + 300 g * 4.186 J/g°C * (20.3 C - 19 °C) / ( 51.9 g * 0.449 J/g°C )
Tir = 90.36 °C
Note :
- The specific heat capacity of water is assumed 1 cal/g°C = 4.186 J/g°C
- We assume no reaction between iron and water
To calculate the initial temperature of the iron sample, use the equation q = m * c * T, where q is the heat absorbed or released, m is the mass of the substance, c is the specific heat capacity, and T is the change in temperature which is 90.36 °C
To calculate the initial temperature of the iron sample, we can use the equation:
q = m * c * T
Where q is the heat absorbed or released, m is the mass of the substance, c is the specific heat capacity, andT is the change in temperature. In this case, we know the mass of the iron sample, the specific heat capacity of iron, and the change in temperature of the water. By rearranging the equation, we can solve for the initial temperature of the iron sample.
Thus,
Tir = 20.3 °C + 300 g * 4.186 J/g°C * (20.3 C - 19 °C) / ( 51.9 g * 0.449 J/g°C )
Tir = 90.36 °C
#SPJ12
Answer:
pOH= 11
Explanation:
pOH= -log[10^ -11]= 11
0.629 moles will be present in moles of atoms are in 9.00 g of 13 carbon atom.
One mole of any substance is the amount of the substance which contain 6.023 × 10²³ atoms or molecule if the substance is atomic or molecular in nature and known as gram atomic mass.
Number of atoms in carbon is 9.00 grams and isotope are 13C,
Number of moles = weight of substance / mass of substance
Substituting the value in formula,
Number of moles = 9.00 grams / 13
Number of moles = 0.629 moles
Therefore, 0.629 moles will be present in moles of atoms are in 9.00 g of 13 carbon atom.
Learn more about moles, here:
#SPJ2
Answer : Protein
Explanation : When the scientist isolated the water soluble compound from the spider venom it had elements such as carbon,nitrogen, hydrogen and oxygen in its chemical structure this gives an assumption of the compound being a protein. But, further confirmation was given when it was injected under the mice skin and which broke down the structural materials in the cell membrane, this is one of the property of protein. And he is going to find out about its toxicity to humans.
The compound from spider venom is likely an alkaloid, a class of compounds often involved in cell membrane disruption and known for their psychotropic and physiological effects on humans. It might have potential medicinal uses like other animal toxins currently under research.
The compound described in the question, which is derived from spider venom and contains nitrogen, carbon, hydrogen, and oxygen, is most likely a type of alkaloid. Alkaloids are naturally occurring chemical compounds containing mostly basic nitrogen atoms. They have a range of effects on living organisms but are often involved in cell membrane disruption. Examples include substances like morphine, codeine, and heroin, as well as various animal toxins currently under study for their medicinal potential. It's worth noting, that medicinal uses of animal toxins is not a new concept. Compounds similar to snake venom, for example, have found uses as antivirals and painkillers. Future research will reveal the exact mechanism and potential medicinal uses of this spider venom-derived compound.
#SPJ3
c) potassium, K(s)
b) manganese, Mn(s)
d) boron, B(s)
Answer:
The molar mass of:
Helium = 4.00 g/mol
Potassium = 39.0983 g/mol
Manganese = 54.94 g/mol.
Boron = 10.81 g / mol
Explanation:
Helium = 4.00 g/mol
Potassium = 39.0983 g/mol
Manganese = 54.94 g/mol.
Boron = 10.81 g / mol