Answer:
In order to determine the rate at which the sediment layers were deposited
Explanation:
Iridium is an important element that belongs to the Platinum group and they are dominantly present in the asteroids and comets. They are the key evidence that suggests the occurrence of an asteroidal impact or a mass extinction event that has taken place in the geological past.
The presence of Iridium mixed with the clay sediments in the boundary between the Cretaceous and Tertiary (K-T boundary) suggested the mass extinction event that wiped out numerous life forms from the earth.
The famous scientist Dr. Luis Walter Alvarez suggested measuring the concentration of Iridium in this K-T boundary in order to determine the rate at which these sediment layers were deposited. They were able to determine that these Iridium elements were present due to the asteroid impact on earth, that wiped out the dinosaurs from the earth. They also considered that this element can be produced from the eruptions of volcanoes.
Answer:
The presence of Iridium mixed with the clay sediments in the boundary between the Cretaceous and Tertiary (K-T boundary) suggested the mass extinction event that wiped out numerous life forms from the earth.
The famous scientist Dr. Luis Walter Alvarez suggested measuring the concentration of Iridium in this K-T boundary in order to determine the rate at which these sediment layers were deposited. They were able to determine that these Iridium elements were present due to the asteroid impact on earth, that wiped out the dinosaurs from the earth. They also considered that this element can be produced from the eruptions of volcanoes.
Click to let others know, how helpful is it
Explanation:Iridium is a component of cosmic dust that rains down upon the earth at a constant rate. Why did Luis Alvarez suggest measuring iridium levels in the K-T boundary?
The measurement 0.025 g has two significant digits. Leading zeroes are not counted as significant.
The correct answer to the question is (b) 2. The number 0.025 g has two significant digits.
In Physics, a significant digit is any non-zero digit or any embedded or trailing zeroes in a number. Leading zeros, which are zeros at the beginning of a decimal number, are not considered significant digits. In the number 0.025 g, the leading zeros are not counted as significant because they only indicate the decimal place of the significant digits (in this case, the digits 2 and 5). Therefore, the number of significant digits is 2.
#SPJ11
The correct answer is 9.6h.
As you know, a radioactive isotope's nuclear half-life tells you exactly how much time must pass in order for an initial sample of this isotope to be halved.
Using the formula , A = Ao.
where , A- final mass after decay
Ao - initial mass
n - the number of half-lives that pass in the given period of time
Now, putting all the values, we get
1.3 × mg = 0.050 mg ×
Take the natural log of both sides of the equation to get,
㏑ = ㏑
㏑ = n. ln
n = 1.6
Since n represents the number of half-lives that pass in a given period of time, you can say that
t= 1.6 × 6 h
t = 9.6h
Hence, it will take 9.6 h until the radioactive isotope decays.
Learn more about radioactive isotope andhalf life here:-
#SPJ1
Using the formula for radioactive decay and the provided half-life of technetium-99m, it can be calculated that it takes approximately 28.5 hours for 0.050 mg of technetium-99m to decay to a quantity of 1.3 x 10^-2 mg.
The decay of a radioactive isotope is an exponential process based on the half-life, which is, in turn, constant for any given isotope. The general formula for the remaining quantity of a radioactive isotope after a given time is given by: N = N0 (0.5) ^(t/t1/2), where (N0) is the initial amount, (N) is the remaining amount, (t) is time, and (t1/2) is the half-life of the isotope. In this case, we are given the initial quantity (N0 = 0.050 mg), the remaining quantity (N = 1.3 x 10^-2 mg), and the half-life (t1/2 = 6.0 hours).
We can solve for time (t) in the equation: N = N0 (0.5) ^(t/t1/2). Plugging in the values, we get 1.3 x 10^-2 = 0.050 x (0.5)^(t/6), and solving for t, we find that it takes approximately 28.5 hours for the technetium-99m to decay to 1.3 x 10^-2 mg.
#SPJ11
B. How can the forces on a space probe be controlled so it will land
on Mars?
O C. What type of substances make up the soil on Mars?
O D. Should the government spend taxpayers' money to send space
probes to Mars?
Answer:A
Explanation: Were there any living organisms is the answer because physics is the study of matter,its motion and behaviour of space and time and some other topics like energy and force.
Answer:
B
Explanation:
Forces and vectors on a probe are a physics thing