(2) The gas particles are in constant, nonlinear motion.
(3) The gas particles have attractive forces between them.
(4) The gas particles have collisions without transferring energy.
is the correct statement that describes the particles of an ideal gas on the basis of kinetic molecular theory.
Further Explanation:
Kinetic theory of gases
It defines gas to be considered as a large number of particles. These particles move randomly in all directions. It explains the macroscopic properties of gases by considering their molecular composition and motion.
Postulates:
(a) The gas molecules are very small and are located far apart from each other. Most of the volume occupied by the gas is an empty space.
(b). The molecules of the gas are in rapid random motion. These can move in all directions.
(c). The gas molecules undergo collisions with each other and with the walls of the container. The collisions between molecules and container walls are responsible for the pressure of the gas.
(d). There is no loss of kinetic energy when gas molecules collide so their collisions are known as perfectly elastic.
(e). No interaction occurs between different gas particles during collisions.
(1) The gas particles are relatively far apart and have negligible volume.
The size of gas particles is very small and therefore these have negligible volume. Moreover, these molecules are far away from each other.
(2) The gas particles are in constant, nonlinear motion.
The motion of the gas particles occurs randomly in all directions so they can not be in constant, nonlinear motion.
(3) The gas particles have attractive forces between them.
The particles of gas have no interaction with each other. So no attractive forces are present between them.
(4) The gas particles have collisions without transferring energy.
The collisions of gas molecules are considered to be perfectly elastic. So the total energy of the system remains constant. It neither increases nor decreases.
Therefore the correct statement is (1).
Learn more:
Answer details:
Grade: High School
Subject: Chemistry
Chapter: Ideal gas equation
Keywords: kinetic theory of gases, collisions, energy, constant, attractive forces, particles, molecules, volume, random motion, perfectly elastic, negligible.
Answer:
(1) The gas particles are relatively far apart and have negligible volume
Explanation:
The Kinetic Molecular Theory was formulated to explain the behaviour of ideal gases. The main postulates of the theory are:
-The volume occupied by the gases is negligible when compared to the distance between them
- They do not experience any intermolecular forces of attraction or repulsion
-The collision between gas particles is completely elastic
-The gas particles are in constant random motion
Therefore the first statement which suggests that the gas particles are relatively far apart and have negligible volume is in accordance with the theory
b. Número de electrones _______________
c. Número de neutrones _______________
It is inversely proportional to the size of the particles.
It is directly proportional to the temperature of the gas.
It is inversely proportional to the temperature of the gas.
Answer:
(c). directly proportional to the absolute temperature of the gas.
Explanation:
Average kinetic energy of the particles of an ideal gas is directly proportional to the temperature of the gas.
KE = k T,
k = Boltzmann's constant
T = absolute temperature of the gas.
Answer:
The correct answer is alcohol. It is the common component in beer, wine and any liquor. Usually, alcohol is produced by fermentation of organic products containing glucose to produce alcohol, specifically ethanol, as the important product and the by-products water and carbon dioxide.