Answer:
When the pressure changes from 1417 psi to 160.186 psi the volume changes from 0.145 L to 0.878 l and the temperature changes from 287 k to 196 k
Explanation:
According to general gas equation:
P₁V₁/T₁ = P₂V₂/T₂
Given data:
Initial volume = 0.145 L
Initial pressure = 1417 psi (1417/14.696 =96.42 atm)
Initial temperature = 287 K
Final temperature = 196 K
Final volume = 0.878 L
Final pressure = ?
Formula:
P₁V₁/T₁ = P₂V₂/T₂
P₁ = Initial pressure
V₁ = Initial volume
T₁ = Initial temperature
P₂ = Final pressure
V₂ = Final volume
T₂ = Final temperature
Solution:
P₂ = P₁V₁ T₂/ T₁ V₂
P₂ = 96.42 atm × 0.145 L × 196 K / 287 K × 0.878 L
P₂ = 2740.26 atm .L. K / 251.99 k. L
P₂ = 10.9 atm
atm to psi:
10.9 × 14.696 = 160.186 psi
Answer:
160.186 psi
Explanation:
Answer:
Yes
Explanation:
b. A 100.0 g sample of liquid ethanol vaporizes at its boiling point. Hvap = 38.6 kJ/mol
The heat required for the following two processes are:
a. 10.74 KJ
b. 83.92 KJ
Part a)
Given:
Mass (m) of ethanol = 100g
Heat of fusion, Hfus = 4.94 kJ/mol
To find:
Heat (Q) =?
Mass of C₂H₅OH = 100g
Molar mass of C₂H₅OH = (2x12)+ (5x1) + 16 + 1 = 46g/mol
Number of Mole = Mass /Molar Mass
Number of mole (n) of C₂H₅OH = 100/46 = 2.174 moles.
Calculation for Heat of fusion:
Q = n x Hfus
Q = 2.174 mol x 4.94 kJ/mol
Q = 10.74KJ
Therefore, 10.74 KJ of heat is required to melt the ethanol.
Part b)
Given:
Mass of C₂H₅OH = 100g
Heat of vaporization, Hvap = 38.6 kJ/mol
To find:
Heat (Q) =?
Calculation for Heat of vaporization:
As calculated above, the number of mole in 100g of ethanol, C₂H₅OH is 2.174 moles.
The heat required to vaporize the ethanol can be obtained as follow:
Q = n x Hvap
Q = 2.174 mol x 38.6 kJ/mol
Q = 83.92 KJ
Therefore, 83.92 KJ of heat is required to vaporize the ethanol.
Find more information about Heat of fusion here:
Answer:
A. 10.74 KJ
B. 83.92 KJ
Explanation:
A. Data obtained from the question include the following:
Mass (m) of ethanol = 100g
Heat of fusion, Hfus = 4.94 kJ/mol
Heat (Q) =..?
Next, we shall determine the number of mole in 100g of ethanol, C2H5OH. This is illustrated below:
Mass of C2H5OH = 100g
Molar mass of C2H5OH = (2x12)+ (5x1) + 16 + 1 = 46g/mol
Number of mole (n) of C2H5OH =..?
Mole = Mass /Molar Mass
Number of mole (n) of C2H5OH = 100/46 = 2.174 moles.
Now, we can obtain the heat required to melt the ethanol as follow:
Q = n x Hfus
Q = 2.174 mol x 4.94 kJ/mol
Q = 10.74KJ
Therefore, 10.74 KJ of heat is required to melt the ethanol.
B. Data obtained from the question include the following:
Mass of C2H5OH = 100g
Heat of vaporisation, Hvap = 38.6 kJ/mol
Heat (Q) =..?
As calculated above, the number of mole in 100g of ethanol, C2H5OH is 2.174 moles.
The heat required to vaporise the ethanol can be obtained as follow:
Q = n x Hvap
Q = 2.174 mol x 38.6 kJ/mol
Q = 83.92 KJ
Therefore, 83.92 KJ of heat is required to vaporise the ethanol.
C. From the above calculations, a higher amount of heat energy i.e 83.92 KJ is required to vaporise the ethanol and a lesser amount of heat energy i.e 10.74 KJ is needed to melt the ethanol.
B. a load, a conductor, and a resistor
C. a load, a resistor, and a capacitor
D. an energy source, a load, and a conductor
Answer:
I think its a i dont know but ya A
Explanation:
Answer: The molarity of solution is 1.39 M
Explanation:
Molarity of a solution is defined as the number of moles of solute dissolved per liter of the solution.
where,
n = moles of solute =
= volume of solution in L
Now put all the given values in the formula of molality, we get
Therefore, the molarity of solution is 1.39 M