Answer:
The number of protons in the nucleus of the atom is equal to the atomic number (Z). The number of electrons in a neutral atom is equal to the number of protons. The mass number of the atom (M) is equal to the sum of the number of protons and neutrons in the nucleus.
hope it helps:)
Answer:
Then number of electrons is equal to number of protons
Explanation:
Since protons are positive and electrons are negitive, they cancel each other.
HENCE THEY ARE NEUTRL
Hope it helps u...
Answer:
The speed of the car is 32.4m/s
Explanation:
1mi = 1600m
152mi = 243 200m
2hr 5min = 7200s + 300s
= 7500s
speed = distance/time
= 243200/7500
= 32.4m/s (3s.f)
The speed of the car is 75 km/h
These are the formulas that we have to remember before solving the problem.
Speed is the rate of change of distance.
v = speed ( m/s )
d = distance ( m )
t = time ( s )
Acceleration is the rate of change of velocity.
a = acceleration ( m/s² )
Δv = change in speed ( m/s )
t = time ( s )
Let us now tackle the problem!
Given:
distance = d = 150 km
time taken = t = 7200 s = 2 hours
Unknown:
velocity = v = ?
Solution:
The acceleration of the car is 0 m/s² because it travels with constant speed.
We could also plot the distance vs time graph as shown in the attachment.
Grade: Middle School
Subject: Physics
Chapter: Kinematics
Keywords: indycar top speed of a fastest police car has ever gone
The car's speed is 75 km/hour, as determined by dividing the total distance travelled (150 km) by the total time taken (2 hours).
To answer this question, we use the
formula for speed
, which is distance traveled divided by the time taken. Here, the distance travelled by the car is 150 km and the time taken is 7200 s (which is equal to 2 hours). Therefore, the speed will be 150 km divided by 2 hours, resulting in a speed of
75 km/hour
, stated to the correct number of significant figures.
#SPJ6
b. To follow instructions
c. To wear shoes with hard soles
d. Handling apparatus
Answer:
C. To wear shoes with hard soles
Explanation:
Select all that apply.
A
Water would be a gas at room temperature,
B
Water would boil at 100 degrees Celsius.
C
Water would form droplets.
D
ice would sink.
Answer:
A. Water would be a gas at room temperature, and
D. Ice would sink in water.
Explanation:
There are three types of intermolecular forces: London dispersion forces, dipole-dipole interactions, and hydrogen bonds. The relative strength of these forces depend on the size of the molecule. However, for small molecules like water (three atoms per molecule,) hydrogen bonds would be much stronger than the other two types of forces.
Without hydrogen bonds, water molecules would be held together only with dipole-dipole interactions and London dispersion forces. To get an idea of what that would be like, consider hydrochloric acid .
and water contain about the same number of electrons. The H-Cl bond in is polar, which allows for dipole-dipole interactions. However, only H-O, H-F, and H-N bonds allow for hydrogen bonding. As a result, there won't be any hydrogen bonding between molecules. Without hydrogen bonding, boils at well below under standard pressure. It is a gas at room temperature under standard pressure. That's about the same as what water molecules would behave (physically) without any hydrogen bonds between them.
Also because of hydrogen bonding, the density of ice (solid ) is typically greater than that of water (liquid .) When compared to water in its liquid state, there are more hydrogen bondings between molecules of water in its solid state. The hydrogen bonds hold the molecules together to form a lattice. Because of this structure due to hydrogen bondings, the molecules are farther apart than they are in the liquid states. As a result, the density of ice is typically smaller than that of water. That would likely not be the case if there was no hydrogen bondings between water molecules.
Answer:
126 kmh⁻¹
Explanation:
We can simply solve this by applying motion equations
where
v - final velocity
u - initial velocity
a-acceleration
t - time
v = u + at
= 25 + 5×2 = 35 ms⁻¹
= (35/1000)×3600 = 126 kmh⁻¹