Given:
Rectangular room is 10 feet; and
1 x 1 ft tiles
The expression for this problem would be:
If we know that the width is w, while the length is w + 10, therefore the perimeter is 2w + 2 (w + 10), so you need 4w + 20 - 4, or 4w + 16 tiles. Since you do not want to count the corners, twice.
arrive at his destination in 5 minutes. The teacher knows
he will need to save 30 seconds to pack up his materials.
What is the maximum number of exit tickets that he can
grade?
A) 8
B) 7
C) 6
D) 5
Answer:
6 papers
Step-by-step explanation:
5 minutes = 5 * 60 = 300 seconds
He needs to save 30 seconds
300 - 30 = 270 seconds
270 seconds / 42.5 seconds per paper
6.352941176 papers
Rounding down since he want to completely grade the paper
6 papers
Answer:
The ball makes the field goal.
The magnitude of the velocity of the ball is approximately 18.166 meters per second.
The direction of motion is -45.999º or 314.001º.
Step-by-step explanation:
According to the statement of the problem, we notice that ball experiments a parabolic motion, which is a combination of horizontal motion at constant velocity and vertical uniform accelerated motion, whose equations of motion are described below:
(Eq. 1)
(Eq. 2)
Where:
, - Coordinates of the initial position of the ball, measured in meters.
, - Coordinates of the final position of the ball, measured in meters.
- Angle of elevation, measured in sexagesimal degrees.
- Initial speed of the ball, measured in meters per square second.
- Time, measured in seconds.
If we know that , , , , and , the following system of equations is constructed:
(Eq. 1b)
(Eq. 2b)
From (Eq. 1b):
And from (Eq. 2b):
Therefore, the ball makes the field goal.
In addition, we can calculate the components of the velocity of the ball when it reaches the field goal post by means of these kinematic equations:
(Eq. 3)
(Eq. 4)
Where:
- Final horizontal velocity, measured in meters per second.
- Final vertical velocity, measured in meters per second.
If we know that , , and , then the values of the velocity components are:
The magnitude of the final velocity of the ball is determined by Pythagorean Theorem:
(Eq. 5)
Where is the magnitude of the final velocity of the ball.
If we know that and , then:
The magnitude of the velocity of the ball is approximately 18.166 meters per second.
The direction of the final velocity is given by this trigonometrical relation:
(Eq. 6)
Where is the angle of the final velocity, measured in sexagesimal degrees.
If we know that and , the direction of the ball is:
The direction of motion is -45.999º or 314.001º.
The ball makes the field goal.
The magnitude of the velocity of the ball is approximately 18.166 meters per second.
The direction of motion is -45.999º or 314.001º.
According to the statement of the problem, we notice that ball experiments a parabolic motion, which is a combination of horizontal motion at constant velocity and vertical uniform accelerated motion, whose equations of motion are described below:
X=Xo+Vo*t*cosФ (Eq. 1)
Y=Yo+Vo*t*sinФ +(1/2)*g*t²(Eq. 2)
Where:
Xo,Yo - Coordinates of the initial position of the ball, measured in meters.
X,Y - Coordinates of the final position of the ball, measured in meters.
Ф- Angle of elevation, measured in sexagesimal degrees.
Vo - Initial speed of the ball, measured in meters per square second.
t - Time, measured in seconds.
If we know that Xo = 0m, Yo = 0m, Vo = 22m/s, Ф = 55°,g = -9.807m/s and X = 40m, the following system of equations is constructed:
40 = 12.618*t (Eq. 1b)
Y = 18.021*t-4.904*t² (Eq. 2b)
From (Eq. 1b):
t = 3.170s
And from (Eq. 2b):
Y = 7.847m
Therefore, the ball makes the field goal.
In addition, we can calculate the components of the velocity of the ball when it reaches the field goal post by means of these kinematic equations:
Vx = Vo*cosФ (Eq. 3)
Vy = Vo*cosФ+g*t (Eq. 4)
Where:
Vx - Final horizontal velocity, measured in meters per second.
Vy- Final vertical velocity, measured in meters per second.
If we know that Vo = 22m/s, Ф= 55°, g = -9.807m/s and t = 3.170s, then the values of the velocity components are:
Vx = (22m/s)*cos55°
Vx = 12.619m/s
Vy = (22m/s)*sin55°+(-9.807m/s²)*3.170s
Vy = -13.067m/s
The magnitude of the final velocity of the ball is determined by Pythagorean Theorem:
V = √(Vx²+Vy²) (Eq. 5)
Where is the magnitude of the final velocity of the ball.
If we know that Vx = 12.619m/s and Vy = -13.067m/s, then:
V = √((12.619m/s)²+(-13.067m/s)²)
V ≈ 18.166m/s
The magnitude of the velocity of the ball is approximately 18.166 meters per second.
The direction of the final velocity is given by this trigonometrical relation: Ф = tan^(-1)(Vy/Vx)(Eq. 6)
Where Ф is the angle of the final velocity, measured in sexagesimal degrees.
If we know that Vx = 12.619m/s and Vy = -13.067m/s, the direction of the ball is:
Ф = tan^(-1)((-13.067m/s)/(12.619m/s))
Ф = -45.999° = 314.001°
The direction of motion is -45.999º or 314.001º.
For more questions on magnitude.
#SPJ3
Answer:
Here is the answer 160 miles
Step-by-step explanation:
If you want more explanation you just do 32x5=160 or if its back and forth it would be 32x10=320