Models are representations that help us understand and analyze real-life situations, but they may have limitations or assumptions that make some statements not universally true.
Models are representations of real-life situations or things that help us understand and analyze them better. However, the statement, 'all of the following are true of models except,' implies that there are some characteristics that do not apply to models. Different models may have different purposes, limitations, or assumptions that may make some statements not universally true. For example, while models can provide insights and predictions, they cannot capture the full complexity of the real world or account for all variables. Models are valuable tools in various fields and disciplines, including social studies, as they help us simplify, analyze, and communicate complex phenomena and processes.
#SPJ2
Answer:
Option 3) Constructive And destructive interference of light waves
Explanation:
When the light is incident on a soap bubble of certain thickness it constructively interferes for wavefronts which are in phase to produce white light and when the wavefronts are out of phase, they undergo destructive interference to produce a series of colors. Thus, interference is the reason.
The Objects separated by gravitational force of 360 N, masses 6.25 × 10¹⁴ kg and 7.20 × 10⁵ kg. Applying Newton's law with G = 6.67430 × 10⁻¹¹ m³ kg⁻¹ s⁻² yields distance is 2.79139 km.
We can apply Newton's law of universal gravitation to calculate the distance between the two objects. The formula takes the form:
F = (G ⋅ m₁ ⋅ m₂) / r²
Where:
F represents the force between the two objects
G stands for the gravitational constant (6.67430 × 10⁻¹¹ m³ kg⁻¹ s⁻²)
m₁ and m₂ denote the masses of the two objects
r indicates the distance between the centers of the two objects
Given that the force F = 360 N, m₁ = 6.25 × 10¹⁴ kg, and m₂ = 7.20 × 10⁵ kg, we can solve for r:
r² = (G ⋅ m₁ ⋅ m₂) / F
r = √((G ⋅ m₁ ⋅ m₂) / F)
Now, substituting the values and solving for r:
r = √(((6.67430 × 10⁻¹¹ m³ kg⁻¹ s⁻²) ⋅ (6.25 × 10¹⁴ kg) ⋅ (7.20 × 10⁵ kg)) / 360 N)
r ≈ 2791.39 m
Finally, converting the distance from meters to kilometers:
r ≈ 2.79139 km
Consequently, the two objects are approximately 2.79139 kilometers apart.
To know more about gravitational visit -
#SPJ11
Answer:
1.1 x 10⁵m/s²
Explanation:
Given parameters:
Velocity = 452m/s
distance = 0.93m
Unknown:
Acceleration of the bullet = ?
Solution:
To solve this problem, we use one of the kinematics equation which is given below:
V² = U² + 2aS
V is the final velocity
U is the initial velocity = 0m/s
a is the unknown acceleration
S is the distance traveled
So;
452² = 0² + (2 x a x 0.93)
204304 = 1.86a
a = 1.1 x 10⁵m/s²
The acceleration of the bullet in the gun barrel can be calculated using the kinematic equation for motion. By substituying the given values into the equation, we find the acceleration to be approximately 1.095 x 10^5 m/s^2.
The subject of this question is Physics, specifically a topic under mechanics known as kinematics. The problem given can be solved using kinematic equations which are used to describe the motion of an object without considering the forces that cause it to move. In this case, the final velocity (vf) of the bullet is given as 452 m/s, the initial velocity (vi) is assumed to be 0 as it starts from rest, and the distance (d) is given as 0.93 m. We are asked to determine the value of acceleration (a).
Using the kinematic equation vf2 = vi2 + 2ad and substituting the given values, we get (452 m/s)2 = 0 + 2*a*0.93 m. We can rearrange to solve for acceleration to get: a = (452 m/s)2 / (2*0.93 m) = 109523.66 m/s2.
So, the acceleration of the bullet in the gun barrel is approximately 1.095 x 105 m/s2.
#SPJ3