Answer:
0.64 g of S
Solution:
The balance chemical equation is as follow,
2 Cu + S ----> Cu₂S
According to equation,
127 g (2 mole) Cu produces = 159 g (1 mole) of Cu₂S
So,
2.54 g Cu will produce = X g of Cu₂S
Solving for X,
X = (2.54 g * 159 g) / 127 g
X = 3.18 g of Cu₂S
Now, it is confirmed that the reaction is 100% ideal. Therefore,
As,
127 g (2 mole) Cu required = 32 g (1 mole) of S
So,
2.54 g Cu will require = X g of S
Solving for X,
X = (2.54 g * 32 g) / 127 g
X = 0.64 g of S
Answer : The total mass of sulfur consumed will be, 0.64 grams and the chemical formula of the compound produced is, copper oxide.
Solution :
According to the law of conservation of mass, the total mass of reactant should be equal to the total mass of product.
The balanced chemical reaction will be,
In this reaction, copper and sulfur are the reactants and copper sulfide is the product.
Let the mass of sulfur be 'x' gram
According to the law of conservation of mass,
Therefore, the total mass of sulfur consumed will be, 0.64 grams and the chemical formula of the compound produced is, copper oxide.
Answer:
6) V 7) M 8) V 9) D 10) D 11) M 12) D 13) V
Explanation:
Volume- cm^3, ml, etc.
Mass- g/cm^3, g/ml, etc.
Density- g, kg, etc.
Answer:
It could react with the present hydride or hydroxile ions.
Explanation:
Hello,
One the main features of buffers, is that when the acid-base conjugates are formed they could react with the added or in order to keep the pH as constant as its buffer capacity allows it.
Best regards.
A buffer solution maintains a stable pH primarily through the action of its acid-base conjugate pair reacting to counter changes, a property known as buffer capacity. High concentrations increase buffer capacity, allowing more acid or base to be neutralized. However, exceeding the buffer capacity can lead to pH changes.
The pH of a buffer solution doesn't greatly depend on the concentrations of its acid-base conjugate pair as the buffer's job is to keep the pH relatively constant. This is achieved by having appreciable amounts of its weak acid–base pair in the solution. If a strong acid or base is introduced into the system, the buffer pair reacts to counteract these changes. This is called buffer capacity.
For instance, consider a buffered solution composed of acetic acid and its conjugate base, acetate. The system can resist changes in pH upon addition of small quantities of an acid or base. This is because acetic acid and acetate can consume small additions of hydrogen ions (from an acid) or hydroxyl ions (from a base), keeping the overall pH stable.
When concentrations of the acid-base pair are high, the buffer capacity increases and hence more amounts of acid or base can be neutralized without a significant change in pH. However, there are limits to this capacity. If excessive amounts of acid or base are added, they may exceed the buffer's capacity, and its acid/base pairs will be either largely consumed or overrun, leading to changes in pH.
#SPJ3
A Brønsted-Lowry base is a species that accepts a proton (hydrogen ion) from another species. NH3, OH-, and even water itself are examples of Brønsted-Lowry bases, denoting they accept protons.
A Brønsted-Lowry base is a species that can accept a proton (a hydrogen ion) from another species. For instance, in a reaction between water and ammonia, NH3 is the Brønsted-Lowry base because it accepts a proton from water. This means that any species capable of accepting a proton, such as hydroxide ion (OH-), ammonia (NH3), or water itself can be considered a Brønsted-Lowry base.
For example, think about the dissociation of water:
H2O + H2O ⇌ H3O+ + OH-
In this reaction, water is acting as both a Brønsted-Lowry acid and a Brønsted-Lowry base. One water molecule donates a proton and becomes a hydroxide ion (the conjugate base), while the other accepts a proton to become hydronium (the conjugate acid).
Another example would be the ionization of ammonia in water:
NH3 + H2O ⇌ NH4+ + OH-
Here, ammonia (NH3) is the Brønsted-Lowry base as it accepts a proton from water to become ammonium (NH4+).
#SPJ12
questions 3 gravity
question 1 meteorites
question 2 orbit
question 4 rocket and gaseous
Answer:
1. moons 2. orbits 3. gravity 4. rocky, gaseous
Explanation: