Answer:
The formula for acceleration due to gravity at the surface of a celestial body is:
a = (G * M) / r^2
Where:
G (the gravitational constant) is approximately 6.67430 x 10^-11 m^3 kg^-1 s^-2.
M (the mass of Jupiter) is approximately 1.898 x 10^27 kilograms.
r (the mean radius of Jupiter) is approximately 71,492,000 meters.
Now, let's calculate it:
a = (6.67430 x 10^-11 m^3 kg^-1 s^-2 * 1.898 x 10^27 kg) / (71,492,000 meters)^2
a ≈ 24.79 m/s^2
So, the free-fall acceleration at the surface of Jupiter is approximately 24.79 m/s^2.
The free-fall acceleration on the surface of Jupiter (g) is calculated by using Newton's Universal Law of Gravitation (g = G * M / r^2), where G is the gravitational constant, M is the mass of Jupiter and r is the radius of Jupiter.
To calculate the acceleration due to gravity at the surface of Jupiter, we can use Newton's Universal Law of Gravitation. It states that the force of gravity is equal to the gravitational constant (G) times the mass of the body (in this case, Jupiter) divided by the radius of the body squared. The formula can be expressed as F = G * (M * m / r^2), where F is the force of gravity, G is the gravitational constant, M is the mass of the larger body (Jupiter), m is the mass of the smaller body (object in question), and r is the distance between the centers of the two bodies - which is the radius of Jupiter when the object is on its surface.
The formula to find the acceleration due to gravity (g) on the surface of Jupiter is found by setting the weight of an object (F = m*g) equal to the gravity force (F = G * (M * m / r^2)) leading to the cancellation of the mass of the object (m). That results in g = G * M / r^2. This means that the acceleration due to gravity on the surface of Jupiter depends on the mass of Jupiter and the radius of Jupiter, and not on the mass of the object.
#SPJ11
the motion of the star
the temperature of the atmosphere of the star
all of the above
Answer:
all of the above
Explanation:
The spectrum of the star is is used to study its composition, motion and surface temperature. The absorbed or emitted wavelength indicates the elements present. The peak wavelength determines the surface temperature of the star using Wein's law. Peak wavelength is inversely proportional to temperature. The red-shift or blue shift indicates whether the star is moving away or towards us.
Answer:
Rate of change of length as a function of time is given by
Explanation:
The length as function of time is given by
Differentiating with respect to time we get
Answer:
Current will decrease.
Explanation:
When we increase the number of stepping in transformer, the voltage will increase as its is directly proportional to the number of turn of stepping. Thus as the voltage will increase, current will decrease. As per the equation of ideal transformer, E1 / E2 = I2 / I1
E1 and E2 are the voltages in primary and secondary winding and I1 and I2 are the current.
As the number of turns will be increased more inevitable losses will be generated that dissipates heat thus warming the primary.
Though the conservation of energy is obeyed but losses occur in this scenario hence step-up transformers cannot be used to create free energy.
Work done to lift the mass is given by
W = mgH
here we know that
m = mass = 2 kg
g = acceleration due to gravity = 9.8
H = height = 130 m
now using the above equation we can write
so the energy required to do the work is 2548 J
If this is the case, then the energy likely left the system through external forces or heat dissipated into the environment.
Answer:
0.00 J
Explanation: