Answer: 4
Explanation: Trust me
Answer:
C6H6
Explanation:
I took the test a while ago I think I got it right
Answer:
C6H6
Explanation:
I tried it and it worked
Answer:
New volume (V2) = 60 liter
Explanation:
Given:
Amount of helium (V1) = 20 Liter
Temperature (T1) = 100°K
Temperature (T2) = 300°K
Find:
New volume (V2)
Computation:
According to Gas Law:
V1 / T1 = V2 / T2
20 / 100°K = V2 / 300°K
V2 = 60 liter
New volume (V2) = 60 liter
Answer:
A) α = -1.228 rev/min²
B) 7980 revolutions
C) α_t = -8.57 x 10^(-4) m/s²
D) α = 21.5 m/s²
Explanation:
A) Using first equation of motion, we have;
ω = ω_o + αt
Where,
ω_o is initial angular velocity
α is angular acceleration
t is time the flywheel take to slow down to rest.
We are given, ω_o = 140 rev/min ; t = 1.9 hours = 1.9 x 60 seconds = 114 s ; ω = 0 rev/min
Thus,
0 = 140 + 114α
α = -140/114
α = -1.228 rev/min²
B) the number of revolutions would be given by the equation of motion;
S = (ω_o)t + (1/2)αt²
S = 140(114) - (1/2)(1.228)(114)²
S ≈ 7980 revolutions
C) we want to find tangential component of the velocity with r = 40cm = 0.4m
We will need to convert the angular acceleration to rad/s²
Thus,
α = -1.228 x (2π/60²) = - 0.0021433 rad/s²
Now, formula for tangential acceleration is;
α_t = α x r
α_t = - 0.0021433 x 0.4
α_t = -8.57 x 10^(-4) m/s²
D) we are told that the angular velocity is now 70 rev/min.
Let's convert it to rad/s;
ω = 70 x (2π/60) = 7.33 rad/s
So, radial angular acceleration is;
α_r = ω²r = 7.33² x 0.4
α_r = 21.49 m/s²
Thus, magnitude of total linear acceleration is;
α = √((α_t)² + (α_r)²)
α = √((-8.57 x 10^(-4))² + (21.49)²)
α = √461.82
α = 21.5 m/s²
Answer:
It is primarily due the Sun.
Explanation:
Sun is the ultimate source of energy.
Due to the heat of Sun, the atmosphere heats up unevenly. Due to which there is a temperature difference between the two regions. As the temperature difference is maintained, the air flows, i.e., atmosphere is moving.
Similarly, water gets heat up unevenly in oceans. Due to which a temperature difference is maintained between two points in the ocean and thus the oeans are moving constantly.
B. Under the zone of saturation
C. In the layer of bedrock
D. At the top of the zone of saturation