Answer: Protons inside the nucleus of an atom are held together despite having the same positive charge because of the strong nuclear force, also known as the strong nuclear interaction or simply the strong force. The strong force is one of the fundamental forces in nature, along with gravity, electromagnetism, and the weak nuclear force. It is responsible for binding protons and neutrons (collectively known as nucleons) together in the nucleus of an atom.
Explanation: The strong force is an extremely powerful force at very short distances, acting over a range of about 1 femtometer (10^-15 meters). This force is much stronger than the electrostatic repulsion between protons due to their positive charges. So, even though protons have the same positive charge and would naturally repel each other due to the electromagnetic force, the strong nuclear force overcomes this repulsion and binds them together within the nucleus, keeping the nucleus stable.
Protons inside the nucleus of an atom are held together by the nuclear force, also known as the strong nuclear force. This force is strong enough to override the repulsive electromagnetic force between protons.
Protons inside the nucleus of an atom, despite having the same positive charge and thus naturally repelling each other, are held together fundamentally due to a force called the nuclear force, sometimes referred to as the strong nuclear force or strong interaction.
This is one of the four basic forces of nature, the others being gravity, electromagnetic force, and the weak nuclear force. The nuclear force is so strong that it overrides the repulsive electromagnetic force between protons thereby holding the protons together inside the nucleus.
#SPJ11
B) Carbon dioxide
C) water
B. an inference.
C. a theory.
D. a controlled experiment.
b. one millionth of a gram
c. approximately the mass of a proton
d. approximately the mass of an electron
CuSO4 + 2NaOH mc009-2.jpg Cu(OH)2 + Na2SO4
2NaOH + H2CO3 mc009-3.jpg Na2CO3 + 2NaOH
Pb(NO3)2 + Na2SO4 mc009-4.jpg 2NaNO3 + PbSO4
Answer:
The correct option is: Fe₂O₃ + 3CO → 2Fe + 3CO₂
Explanation:
An oxidation-reduction reaction, also known as the redox reaction, is a chemical reaction in which there is simultaneous transfer of electrons from one species to another.
The species that gains electrons gets reduced. Whereas, species that loses electrons gets oxidized.
Among the given options, only reaction 1 is a redox reaction:
Fe₂O₃ + 3CO → 2Fe + 3CO₂
Reason- In this reaction, iron (Fe) gains electrons and gets reduced from +3 oxidation state in Fe₂O₃ to 0 oxidation state in Fe. Whereas, carbon (C) loses electrons and gets oxidized from +2 oxidation state in CO to +4 oxidation state in CO₂.
Since both the oxidation and reduction reactions are occurring simultaneously.
Therefore, it is an redox reaction.
(1) Sodium has a melting point of 371 K.
(2) Sodium has a molar mass of 23 grams.
(3) Sodium can conduct electricity in the liquid
phase.
(4) Sodium can combine with chlorine to produce
a salt.
Answer;
(4) Sodium can combine with chlorine to producea salt.
Explanation;
Sodium is an alkali metal (group 1 ) in the periodic table. It is a soft metal, reactive and with a low melting point. It has an atomic weight of 23 grams.
Sodium is a good conductor of electricity due to the presence of delocalized electrons in its metallic structure. It reacts vigorously with water to produce sodium hydroxide and hydrogen.
-When exposed to air, metallic sodium recently cut looses its silvery appearance and acquires an opaque grey color due to the formation of a sodium oxide coating.