Explanation:
here is your answer
here you go ,
Visible light waves are the only electromagnetic waves we can see has the longest wavelength
It has no fixed volume or shape.
B.
It has a fixed volume and varied shape.
C.
It has high energy and expands to fill the container.
D.
It has a fixed volume and shape.
Answer:
Atom X will accept electrons from atom Y
Explanation:
The outermost shell of an atom is full when it contains 8 valence electrons (except for the first shell, which only contains 2 electrons). Therefore, any atom tends to accept electrons if it's very close to complete the shell with 8 electrons, or to donate electrons if it has only a few electrons in its outest shell.
In this case, we have:
- Atom X: 6 valence electrons --> it tends to accept electrons, since it needs only 2 of them to complete the shell
- Atom Y: 2 valence electrons --> it tends to donate electrons, so it has its outermost shell completed also
- Atom Z: 8 valence electrons --> it has no tendency in donate/accept electrons, since its outermost shell is already full
Therefore, atom Y will donate its 2 valence electrons to atom X, so that both of them have their outermost shell completed.
Answer:
Atom X will accept electrons from atom Y
Explanation:
I did the test
What are some ways to change the resistance in a circuit?
Suppose you have an electrical device that needs a steady current of 10 milliamperes. You need to greatly increase the length of the wire between the battery pack and the appliance. What changes will you need to make in your circuit to keep a steady current?
Suppose you are designing a toaster, a device that requires several hot, glowing wires to do its job. You want to use as little voltage as possible. Describe the characteristics of the "toasting" wires.
Please help me!!
Answer:
Explanation:
Ohm's Law is V = IR Voltage = Current x Resistance
Therefore, I = V/R
Part 1: The longer the wire, the greater the resistance. Therefore, to keep the current, I, at a steady 10 mA, you need to increase the voltage if you're going to lengthen the wire. Increase the battery voltage by using a higher voltage battery, or connect more batteries in series until you have sufficient voltage.
Part 2: For the toaster, you need the resistance in the wires to be high in order for the wires to glow and get hot. Toasting wires need to be made from a material with high resistance and to coil or loop them to increase the length. Also, the thinner the wire, the higher the resistance. In summary, choose a wire material that has a high resistance and use thin wire that is coiled or looped. Of course, you have to make sure that the "toasting wires" don't get so hot that they catch fire.
Answer:
Explanation:
I'd be happy to help you with the questions related to Ohm's Law and circuit design:
Ways to Change Resistance in a Circuit:
Resistance in a circuit can be changed by adjusting the following factors:
Length of the Conductor: Increasing the length of a wire increases its resistance.
Cross-Sectional Area: Reducing the cross-sectional area of the conductor increases resistance.
Material: Different materials have different resistivity. Choosing a material with higher resistivity increases resistance.
Temperature: Resistance of most conductors increases with temperature.
Maintaining a Steady Current with Increased Wire Length:
If you need to maintain a steady current of 10 milliamperes while greatly increasing the length of the wire between the battery pack and the appliance, you should reduce the resistance in the circuit. To do this:
Use a wire with a larger cross-sectional area (lower resistance).
Select a material with lower resistivity.
Increase the voltage from the battery pack, keeping in mind the power requirements of the device, to compensate for the increased resistance due to the longer wire.
Designing a Toaster with Low Voltage:
To design a toaster that operates at a lower voltage while using hot, glowing wires, you can consider the following characteristics for the "toasting" wires:
High Resistivity Material: Use a material with high resistivity, which will heat up quickly with less voltage applied. Nichrome wire is commonly used for this purpose.
Long and Thin Wires: Long and thin wires will have higher resistance and heat up more with less voltage. Ensure the wires are designed for the required power.
Temperature Control: Implement a temperature control system to maintain the wires at the desired temperature range for toasting while minimizing power consumption.
Insulation: Proper insulation should be used to ensure safety and prevent electrical hazards.
Safety Mechanisms: Incorporate safety features to prevent overheating and potential fire hazards, as the wires will operate at high temperatures.
Keep in mind that safety is a crucial consideration when working with high-temperature wires, and it's essential to follow relevant electrical and safety standards when designing such devices.