The correct answer is C. Velocity is a vector and requires a direction.
Explanation:
In physics both speed and velocity are used to study the motion of a body; however, they are slightly different. In the case of speed, this describes the rate of change in position based on distance and time, because of this, speed is based on a magnitude or quantity. On the other hand, velocity is a vector because it does not only includes a change of position but the direction of motion usually based on a specific location reference.
Considering this, it can be concluded the difference between speed and velocity is that "velocity is a vector and requires a direction" because velocity includes both the distance and time (speed) along with the direction while speed focuses only on time and distance.
The difference between speed and velocity is that C) velocity is a vector and requires a direction
Vector is a quantity that has a value and direction
Vector can be symbolized in the form of directed line segments
while the length of the vector is denoted by | a |
Vectors can be written in the form of sequential pairs which shows their coordinates in the Cartesian plane: a (a₁, a₂)
with length
If the direction of the vector is reversed, we get the vector -a which has the same length but in the opposite direction
Operations on vectors include addition and subtraction. Addition of vector a and vector b can be done in a triangular way where the base point of vector b coincides with the endpoint of vector a
The sum of the two is obtained by pulling the line segment from the base point of the vector a to the endpoint of the vector b which results in a new vector c
So a + b = c
If vector a is added by inverse b (-b) then the sum becomes a + (- b) = a-b
If a vector is multiplied by a scalar number (eg denoted by k) then the new vector becomes k | a |.
If k> 0, the new vector is in the direction of vector a, but if k <0 it will be in the opposite direction
A vector has a direction and a magnitude, while a scalar has only a magnitude.
Examples of scalars are: length, mass, time, speed
Examples of vectors are: force, acceleration, velocity
the average velocity
resultant velocity
the coin velocity
Keywords: vector, speed, velocity
Answer:
The acceleration of the object is 0.5 m/s²
a is correct.
Explanation:
Given that,
Mass of object = 5.0 kg
Acceleration
Using newton's second law
The force is the product of the mass of the object and acceleration.
Put the value of m and a
Now, The same force would give a 20 kg object
So, Using newton's second law again
The acceleration is
Put the value of m and F
Hence, The acceleration of the object is 0.5 m/s²
at a distance of 0.2m for m the equilibrium position.
Answer:
a) 12.8 N
b) 3.2 m/s²
Explanation:
I'm guessing the period is 0.5π s.
Period of a spring in simple harmonic motion is:
T = 2π √(m/k)
Given T = 0.5π and m = 2 kg:
0.5π = 2π √(2/k)
0.25 = √(2/k)
0.0625 = 2/k
k = 32
The spring constant is 32 N/m, and the maximum displacement is 0.4 m. The maximum force can be found with Hooke's law:
F = kx
F = (32 N/m) (0.4 m)
F = 12.8 N
The acceleration can be found with Newton's second law:
∑F = ma
kx = ma
(32 N/m) (0.2 m) = (2 kg) a
a = 3.2 m/s²