Answer:
The circulatory system tends to pump blood around the whole body, while the respiratory system tend to facilitate the exchange of gas in the body so then the blood will look totally fresh. In simpler terms, the heart is connected to the lungs through the means of arteries and veins.
Explanation:
False
a. v, = 630m/s,
c. v, - 1630m/s,
T = 2.78 x 10 s
T=5.78 x 10s
b. V = 1820m/s,
d. V, - 1260m/s,
T = 6.78 x 106 s
T=5.78 x 10's
Please select the best answer from the choices provid
Answer:
v = 1630 m/s
T = 5.78 x 10^5 s
Explanation:
The tangential speed of the satellite can be found by requiring that the gravitational force on the satellite is equal to the centripetal force:
where
G is the gravitational constant
M=5.97 x 1024kg is the Earth's mass
m is the satellite's mass
is the Earth's radius
is the altitude of the satellite
v is the speed of the satellite
Solving for v,
And the period of the orbit is equal to the ratio between the distance covered during one revolution (the circumference of the orbit) and the speed:
So the correct answer is
v = 1630 m/s
T = 5.78 x 10^5 s
Answer:
Well since this question was asked years ago, I do believe that there is more solar energy at the equater and less at the poles.
Explanation:
Answer: 0.6m
Explanation:
Given that:
force = 4.5 N
Work done = 2.7J
Distance moved by the book = ?
Since work is done when force is applied on an object over a distance, apply the formula:
work = force x distance
2.7J = 4.5N x distance
Distance = (2.7J / 4.5N)
Distance = 0.6 m
Thus, the book was moved 0.6 metres far
How is this different from a distance-time graph?
Answer:
its devavtion is different from the distance changes process
Explanation:
A speed-time graph and a distance-time graph represent different aspects of motion. A horizontal line on the former indicates a constant speed (zero acceleration), while a straight, upward-diagonal line on the latter shows constant speed. A flat horizontal line on a distance-time graph shows no movement.
A speed-time graph and a distance-time graph each depict different aspects of motion. A horizontal line on a speed-time graph does indeed indicate constant speed or zero acceleration; the object is moving at a constant speed. However, a distance-time graph shows how the position of the object changes over time.
Let's take an example. If a car is traveling at a constant speed, on a speed-time graph, this would be represented by a horizontal line. The height of the line above the time axis represents the constant speed.
On a distance-time graph, a car moving at constant speed will be represented by a straight line with a positive slope. This is because the position of the car is continuously changing (it's covering distance), and at a constant rate. The slope of the distance-time graph gives us the speed of the car.
So, while a flat horizontal line in a speed-time graph indicates constant speed, a flat horizontal line in a distance-time graph would indicate no change in position, i.e., the object is not moving at all.
#SPJ3