B)a substance glowing in the dark
C)wrapping of ore in paper
D)exposure of a photographic plate
Like he said the answer is "D"
he Solids model formed by atoms as solid spheres for macroscopic measurements, the model has no problems, because the atoms are extremely small
Dalton's atomic model was the first scientifically based model formulated in 1808, it consists of atoms with spheres that cannot be divided and solids are formed by contact between the spheres and chemical compounds are formed by joining atoms of two or more elements, this model is used to approximate solids such as solid spheres there are today.
The size of these spheres (atoms) is very small, nowadays it is known that it is of the order of 10⁻⁹ m, therefore, having a macroscopic crystal more than 10⁻⁶ m in length, it is impossible to measure fluctuations in the sizes of the spheres, since there are 10⁹ spheres in this volume, therefore it is not possible to measure the fluctuations with instruments,
To be able to measure this fluctuation, very small samples and very high resolution transmission microscopes are needed.
In conclusion, the model of the atom as solid spheres for macroscopic measurements, the model has no problems.
Learn more about solids here:
Answer:
Maybe the sizes are too big which means that they need to be smaller because the more compact they are the more smooth and straight they will be because when they are too big it is easier to break them which would lead to a bumpy surface.
Explanation:
I don't know :)
The partial pressure of each component of the gas are:
1. The partial pressure of CH₄ is 276.48 KPa
2. The partial pressure of C₂H₆ is 27.34 KPa
3. The partial pressure of C₃H₈ is 3.38 KPa
We'll begin by calculating the mole fraction of each gas.
Percentage of CH₄ = 90%
Total = 100%
Mole fraction = mole / total
Mole fraction CH₄ = 90 / 100
Percentage of C₂H₆ = 8.9%
Total = 100%
Mole fraction = mole / total
Mole fraction C₂H₆ = 8.9 / 100
Percentage of C₃H₈ = 1.1%
Total = 100%
Mole fraction = mole / total
Mole fraction C₃H₈ = 1.1 / 100
Finally, we shall determine the partial pressure of each gas. This can be obtained as follow:
1. Determination of the partial pressure of CH₄
Mole fraction CH₄ = 0.9
Total pressure = 307.2 KPa
Partial pressure = mole fraction × Total pressure
Partial pressure of CH₄ = 0.9 × 307.2
Partial pressure of CH₄ = 276.48 KPa
2. Determination of the partial pressure of C₂H₆
Mole fraction C₂H₆ = 0.089
Total pressure = 307.2 KPa
Partial pressure = mole fraction × Total pressure
Partial pressure of C₂H₆ = 0.089 × 307.2
Partial pressure of C₂H₆ = 27.34 KPa
3. Determination of the partial pressure of C₃H₈
Mole fraction C₃H₈ = 0.011
Total pressure = 307.2 KPa
Partial pressure = mole fraction × Total pressure
Partial pressure of C₃H₈ = 0.011 × 307.2
Partial pressure of C₃H₈ = 3.38 KPa
Learn more: brainly.com/question/15754440
Answer:
276.48 atm → CH₄
27.3 atm → C₂H₆
3.38 atm → C₃H₈
Explanation:
Percentages of each gas, are the mole fraction
0.9 CH₄
0.089 C₂H₆
0.011 C₃H₈
Mole fraction = Partial pressure each gas/ Total pressure
0.9 = Partial pressure CH₄ / 307.2 kPa
307.2 kPa . 0.9 = 276.48 atm
0.089 = Partial pressure C₂H₆ / 307.2 kPa
307.2 kPa . 0.089 = 27.3 atm
0.011 = Partial pressure C₃H₈ / 307.2 kPa
307.2 kPa . 0.011 = 3.38 atm
The compound Al2(CrO4)3 contains 12 oxygen atoms per formula unit. Knowing that one mole of oxygen atoms has a mass of 16.00 grams, the total mass of oxygen in 1.00 mole of Al2(CrO4)3 is grams.
The primary task here is to find the total mass of oxygen in 1.00 mole of Al2(CrO4)3. This is a classic chemistry problem that involves understanding the composition and molar mass of compounds. In the compound Al2(CrO4)3, the subscript 3 after (CrO4) means there are three chrome tetraoxides in one formula unit of the compound.
Every CrO4 ion is composed of one chromium atom and four oxygen atoms. Therefore, three CrO4 ions will contain 3 * 4 = 12 oxygen atoms.
Knowing that one mole of oxygen atoms weighs approximately 16.00 grams, we can find the total mass of oxygen in the compound by multiplying this molar mass by the number of oxygen atoms. Again, in one mole of Al2(CrO4)3 we have 12 oxygen atoms, hence grams.
So, the total mass of oxygen present in 1.00 mole of Al2(CrO4)3 is 192.00 grams.
#SPJ11