Answer:
The percent yield of this reaction is 92.7 %
Explanation:
Step 1: Data given
Mass of nitrogen gas (N2) = 34.0 grams
Mass of ammonia (NH3 produced = 41.0 grams
Molar mass of N2 = 28.0 g/mol
Molar mass of NH3 = 17.02 g/mol
Actual yield of ammonia = 38 grams
Step 2: The balanced equation
N2(g) + 3H2(g) → 2NH3(g)
Step 3: Calculate moles
Moles = mass / molar mass
Moles N2 = 34.0 grams / 28.0 g/mol
Moles N2 = 1.214 moles
Step 4: Calculate moles NH3
For 1 mol N2 we need 3 moles H2 to produce 2 moles NH3
For 1.214 moles N2 we'll have 2* 1.214 = 2.428 moles NH3
Step 5: Calculate mass NH3
Mass NH3 = moles * molar mass
Mass NH3 = 2.428 moles * 17.02 g/mol
Mass NH3 = 41 grams
Step 6: Calculate percent yield for the reaction
Percent yield = (actuald yield / theoretical yield) * 100 %
Percent yield = (38 grams / 41 grams ) * 100 %
Percent yield = 92.7 %
The percent yield of this reaction is 92.7 %
Answer:
Explanation:
Hello,
In this case, by considering the given chemical reaction, with given mass of nitrogen, one could compute the theoretical yield of ammonia as shown below and considering their 1 to 2 molar relationship in the chemical reaction:
In such a way, the percent yield is obtained as shown below:
Best regards.
Velocity is the displacement made per unit of time.
If direction or speed of the object change it causes change in velocity.
Acceleration is the term used for measuring the change of velocity. Acceleration is the change of velocity per unit of time.
The boiling point of standard water is 100 degree Celsius, with the addition of solute the boiling point is elevated. The freezing point of the solution will be -18.04 degree Celsius.
The boiling point is the temperature at which the liquid is converted to vapor. The change in boiling point of the aqueous solution gives the molality of the solution as:
The depression in freezing point from molality is given as;
The freezing point of aqueous water is zero degree Celsius. The freezing point of the solution will be:
The freezing point of the solution is -18.04 degree Celsius.
Learn more about boiling point, here:
Answer:
T°fussion of solution is -18°C
Explanation:
We have to involve two colligative properties to solve this. Let's imagine that the solute is non electrolytic, so i = 1
First of all, we apply boiling point elevation
ΔT = Kb . m . i
ΔT = Boiling T° of solution - Boiling T° of pure solvent
Kb = ebuliloscopic constant
105°C - 100° = 0.512 °C kg/mol . m . 1
5°C / 0.512 °C mol/kg = m
9.7 mol/kg = m
Now that we have the molality we can apply, the Freezing point depression.
ΔT = Kf . m . i
Kf = cryoscopic constant
0° - (T°fussion of solution) = 1.86 °C/m . 9.76 m . 1
- (1.86°C /m . 9.7 m) = T°fussion of solution
- 18°C = T°fussion of solution
b. The positive charge on the nucleus of the ion is two units greater than the nuclear charge on the atom.
c. The ion has two more protons than the atom.
d. The ion will react more readily with free Cl₂. (E)The ion has two more planetary electrons than the atom. Can anyone explain this one?
The volume remains the same.
The amount of solvent increases.
The concentration increases.
(full sentences please)
The best solution to deforestation is to curb the felling of trees by enforcing a series of rules and laws to govern it. Deforestation in the current scenario may have reduced; however, it would be too early to assume. The money-churner nature of forest resources can be tempting enough for deforestation to continue.
The best solution to deforestation is to curb the felling of trees by enforcing a series of rules and laws to govern it. Deforestation in the current scenario may have reduced; however, it would be too early to assume. The money-churner nature of forest resources can be tempting enough for deforestation to continue.