Nucleic acids are composed of:a: a phosphate group, a pentose sugar, a nitrogen base
b: a phosphate group, a pentose sugar, a carboxylic acid
c: a pentose sugar, a nitrogen base, an R group
d: a nitrogen base, an amino acid group, a carboxylic acid

Answers

Answer 1
Answer:

Answer:

a phosphate group, a pentose sugar, a nitrogen base

Explanation:

nucleic acid is a polymeric macromolecule made up of repeated units of monomeric 'nucleotides' composed of a nitrogenous heterocyclic base which is either a purine or a pyrimidine, a pentose (five carbon) sugar (either ribose or 2′-deoxyribose), and one to three phosphate groups.


Related Questions

What part of a wind turbine provides motion to convert into electricity?a. generatorb. bladesc. towerd. rotor
Which of the following statements is true? Bones protect internal organs and help the body move. Bones are connected to each other by tendons. The knee is an example of a fixed joint. Muscles that bend a joint are extensors, and those that straighten a joint are flexors.
A company has many genetically engineered poplar trees around its factories. Which best describes the poplar trees?A.They are being used for phytoremediation. B.They have transferred their genes to a nontarget species. C.They have reduced the effectiveness of pesticides. D.They are being used for disease resistance.
Skin color in a certain species of fish is inherited via a single gene with four different alleles. How many different types of gametes would be possible in this system? A) 1 B) 2 C) 4 D) 8 E) 16
Cellular respiration included the metabolic pathways of glycolysis, the Krebs cycle, and the electron transport chain, as represented in the figures. In cellular respiration, carbohydrates and other metabolites are oxidized, and the resulting energy-transfer reactions support the synthesis of ATP. Using the information above, describe ONE contribution of each of the following in ATP synthesis. 1. Catabolism of glucose in glycolysis and pyruvate oxidation. 2. Oxidation of intermediates in the Krebs cycle. 3. Formation of a proton gradient by the electron transport chain.

When carbohydrate monomers are joined together, the process is identified as ___________ ______________, and when they are broken apart again it is called ___________.A. hydrolytic bonding; degradation
B. hydrogen bonding; depletion
C. condensation synthesis; hydrolysis
D. polar synthesis; hydrolysis
E. condensation synthesis; anabolism

Answers

C condensation synthesis and hydrolysis

Name two ways forelimbs are different from limbs

Answers

1. The hind limbs tend to be sturdier and stronger
2. Hind limbs are more firmly attached to the spine

The four steps of the scientific method in order are hypothesis, observation, experimentation, and conclusion. True or false

Answers

False. The correct order is:
Question
Research
Hypothesis
Test the hypothesis
Analyze data
Conclusion
False
Question yourself about the topic.

Research information about your topic.

Construct a Hypothesis with a basic knowledge about the topic.

Test your hypothesis to experiment if your hypothesis was right.

Make an analysis of your data and draw a conclusion about your results. 

Communicate your results about the experiment with the science community.



3. Explain why a higher concentration of neurotransmitter above the does not change the height of the action potential. Be sure to explain what occurs during an action potential at the molecular level.

Answers

Answer:

Explanation:

A higher concentration of neurotransmitter above a certain threshold does not change the height of the action potential because the action potential is an all-or-nothing event. It's a rapid and brief electrical signal that travels down a neuron's axon, leading to the release of neurotransmitters at the synapse.

To understand why a higher neurotransmitter concentration doesn't affect the height of the action potential, let's delve into the molecular events that occur during an action potential:

Resting State: Neurons have a resting membrane potential, which is a difference in electrical charge between the inside and outside of the cell. This potential is maintained by ion channels in the cell membrane, primarily sodium (Na+) and potassium (K+) channels. At rest, there are more positively charged ions outside the cell than inside.

Depolarization: When a neuron receives a strong enough excitatory stimulus, it causes a brief change in the ion permeability of the cell membrane. Voltage-gated sodium channels open in response to this stimulus, allowing sodium ions to rush into the cell. This influx of positive ions depolarizes the membrane, meaning the inside of the cell becomes more positively charged compared to the outside.

Threshold: If the depolarization reaches a certain threshold, typically around -55 to -50 mV, it triggers an action potential. At this point, voltage-gated sodium channels open more widely, leading to a rapid influx of sodium ions. This is the "all-or-nothing" phenomenon – once the threshold is reached, the action potential is initiated, regardless of the strength of the initial stimulus.

Rapid Depolarization: The influx of sodium ions causes the membrane potential to become highly positive. This phase is known as rapid depolarization or the rising phase of the action potential.

Repolarization: After reaching its peak positive potential, voltage-gated potassium channels open. Potassium ions flow out of the cell, repolarizing the membrane and restoring the negative charge inside the cell.

Hyperpolarization: In some cases, the outflow of potassium ions overshoots the resting membrane potential, causing a brief hyperpolarization. This hyperpolarization is then corrected as potassium channels close and the sodium-potassium pump restores the resting ion concentrations.

Now, in terms of neurotransmitter concentration affecting the action potential height: once the action potential is triggered (step 3), the neuron goes through a cascade of events that are largely determined by the opening and closing of ion channels. The neurotransmitter concentration in the synapse influences whether the postsynaptic neuron will generate an action potential at all by contributing to the overall membrane depolarization, but it doesn't directly affect the height of the action potential once it's initiated. The action potential is a self-regenerating process, meaning that once it starts, it will proceed along the axon without losing strength, as long as the ion concentrations are maintained.

Final answer:

A higher concentration of neurotransmitter above the threshold does not change the height of the action potential. During an action potential, the movement of ions across the neuron's cell membrane is responsible for the changes in charge and the generation of the action potential.

Explanation:

During an action potential, the movement of ions across the neuron's cell membrane is crucial. At rest, the neuron maintains a negative charge inside compared to the outside, known as the resting potential. This is maintained by the selective permeability of the cell membrane and the presence of ion channels.

When a stimulus is received, the neuron undergoes depolarization. This occurs when the cell membrane becomes more permeable to sodium ions. Sodium channels open, allowing sodium ions to rush into the neuron. This influx of positive charge causes a rapid change in the neuron's charge, resulting in the generation of an action potential.

Once the action potential is generated, it propagates along the neuron. This is achieved through the opening and closing of ion channels along the neuron's membrane. As the action potential moves, sodium channels close and potassium channels open, allowing potassium ions to move out of the neuron. This repolarizes the cell membrane, restoring the negative charge inside the neuron.

The concentration of neurotransmitter above the threshold does not change the height of the action potential because the action potential is an all-or-nothing event. Once the threshold is reached, the action potential is generated with a consistent height. The concentration of neurotransmitter affects the likelihood of reaching the threshold, but once it is reached, the height of the action potential remains the same.

Learn more about neurotransmitters and action potentials here:

brainly.com/question/31031988

#SPJ14

__________ species reproduce rapidly in a new habitat due to the lack of parasites and predators that would naturally control their population growth. A) Invasive B) Isolated C) Native D) Reproductive

Answers

An invasive species is defined as the organism that is not indigenous, or native, to a particular area. Invasive species can give rise to great economic and environmental harm to the new area.

What is native species?

Native species is defined as species which originated and developed in its surrounding habitat and has adapted to living in that particular environment.

Examples of invasive plant species are kudzu vine, English ivy, Japanese knotweed, etc. Animal examples are New Zealand mud snail, European rabbit, grey squirrel, carp, etc.

For more details regarding invasive species, visit:

brainly.com/question/1542287

#SPJ2

Answer:invasive

Explanation:

What is the connection between these four pictures? Need helpppp

A. They consist mainly of new matter

B. They use energy from plants

C. They contain the same amount of energy

D. They may have shared the same mater

Answers

''They may have shared the same matter'' is the connection between these four pictures.

What is the connection between these pictures?

The connection between these pictures is that the cow, dinosour and plant is the living organisms while on the other hand, the four picture has materials from living organisms such as meat, cheese and lattice.

So we can conclude that option D is the correct answer.

Learn more about dinosour here: brainly.com/question/24373044

D
since dinosaurs have been here forever, the would have decomposed into the ground for the grass as nutrients. cows eat grass and the beef in the burger is from a cow sooo they could all be connected