(2) The gas particles are in constant, nonlinear motion.
(3) The gas particles have attractive forces between them.
(4) The gas particles have collisions without transferring energy.
is the correct statement that describes the particles of an ideal gas on the basis of kinetic molecular theory.
Further Explanation:
Kinetic theory of gases
It defines gas to be considered as a large number of particles. These particles move randomly in all directions. It explains the macroscopic properties of gases by considering their molecular composition and motion.
Postulates:
(a) The gas molecules are very small and are located far apart from each other. Most of the volume occupied by the gas is an empty space.
(b). The molecules of the gas are in rapid random motion. These can move in all directions.
(c). The gas molecules undergo collisions with each other and with the walls of the container. The collisions between molecules and container walls are responsible for the pressure of the gas.
(d). There is no loss of kinetic energy when gas molecules collide so their collisions are known as perfectly elastic.
(e). No interaction occurs between different gas particles during collisions.
(1) The gas particles are relatively far apart and have negligible volume.
The size of gas particles is very small and therefore these have negligible volume. Moreover, these molecules are far away from each other.
(2) The gas particles are in constant, nonlinear motion.
The motion of the gas particles occurs randomly in all directions so they can not be in constant, nonlinear motion.
(3) The gas particles have attractive forces between them.
The particles of gas have no interaction with each other. So no attractive forces are present between them.
(4) The gas particles have collisions without transferring energy.
The collisions of gas molecules are considered to be perfectly elastic. So the total energy of the system remains constant. It neither increases nor decreases.
Therefore the correct statement is (1).
Learn more:
Answer details:
Grade: High School
Subject: Chemistry
Chapter: Ideal gas equation
Keywords: kinetic theory of gases, collisions, energy, constant, attractive forces, particles, molecules, volume, random motion, perfectly elastic, negligible.
Answer:
(1) The gas particles are relatively far apart and have negligible volume
Explanation:
The Kinetic Molecular Theory was formulated to explain the behaviour of ideal gases. The main postulates of the theory are:
-The volume occupied by the gases is negligible when compared to the distance between them
- They do not experience any intermolecular forces of attraction or repulsion
-The collision between gas particles is completely elastic
-The gas particles are in constant random motion
Therefore the first statement which suggests that the gas particles are relatively far apart and have negligible volume is in accordance with the theory
Answer:
The answer to your question is below:
Explanation:
Having exactly the same data as the previous experiment I think that having the same data as the previous experiment is extremely important but not the most important, for me is the second most important.
Using the same procedure and variables as the previous experiment For me, this is the most importan thing when a scientist is designing an experiment, because if he or she follow exactly the same procedure and variables, then the results will be very close.
Conducting an experiment similar to the previous experiment This characteristic is important but not the most important.
Using the same laboratory that was used in the previous experiment It is not important the laboratory, if the procedure and variables are the same, your experiment must give the same results in whatever laboratory.
Answer:
B) Using the same procedure and variables as the previous experiment
B. 4,000 g
C. 40 g
D. 4,000 cg
Answer:
A. Solid
Explanation:
that is what creates a solid state. the particles are moving slowly enough (the matter is cold enough) that stable structures between them can be established. so, they get close together and create e.g. grids.
The molar mass of the gas that occupies the given volume is 127.4 g/mol.
The given parameters;
The number of moles of the gas is calculated form ideal gas law as follows;
PV = nRT
where;
The molar mass of the gas is calculated as follows;
Thus, the molar mass of the gas that occupies the given volume is 127.4 g/mol.
Learn more here:brainly.com/question/24542515