Answer:
Kinetic energy = (1/2) (mass) (speed)²
Before slowing down, the car's speed is 25 m/s,
and its kinetic energy is ...
(1/2) (1,500 kg) (25 m/s)²
= (1/2) (1,500 kg) (625 m²/s²)
= 468,750 joules .
After slowing down, the car's speed is 15 m/s,
(1/2) (1,500 kg) (15 m/s)²
= (1/2) (1,500 kg) (225 m²/s²)
= 168,750 joules.
The car lost (468,750 - 168,750) = 300,000 joules
and you heard it from the KING
Answer:
Can you help me with this pls
Answer:
What the other guy said
Answer:Damge buildings that fall down after a earthquake also After shock
Answer:
v = 0
Explanation:
Given that,
Total distance is 50 yards
Dugan got an early lead by finishing the first 25.00 yd in 10.01 seconds
Dugan finished the return leg (25.00 yd distance) in 10.22 seconds.
We need to find Dugan's average velocity for the entire race. As he returns at the initial position. As a result, the net displacement is equal to 0. So,
Average velocity = net displacement/time
v = 0
Hence, his average velocity for the entire race is 0.
Dugan's average velocity for the entire 50 yd race is 2.47 yd/sec, calculated by dividing the total distance (50 yd) by the total time (20.23 sec).
The first step involved is to calculate the total distance that Dugan had covered. In this case, he swam 25 yd twice, making the total distance 50 yd.
Next, we need to find the total time it took Dugan to swim the entire distance. We add the time of the first leg, which is 10.01 seconds, to the time of the return leg, which is 10.22 seconds, providing a total time of 20.23 seconds.
The average velocity is defined as the total distance divided by the total time. So, for Dugan, it would be 50 yd divided by 20.23 sec, which equals 2.47 yd/sec (rounding to the nearest hundredth).
#SPJ3