The principal reason why we must consider the uncertainty principle when discussing electrons and other subatomic particles but not when discussing our macroscopic world is:
According to the given question, we need to state the principal reason why the uncertainty principle is used when discussing electrons and other subatomic particles but not used in our macroscopic world.
As a result of this, we can see that the reason for this is because there are certain frequencies at which the photons can be absorbed during the electron change as energy becomes more random.
Read more here:
A. Loam
B. Clay
C. Sand
2. Which type of soil is best for planting?
A. Loam
B. Clay
C. Sand
3. How does each soil types differ?
A. Texture
B. Color
C. Both A & B
4. Which type of soil do you usually expect if the community is along the seashore?
A. Loam
B. Clay
C. Sand
5. Why is soil important to living things?
A. Forms part of the earth where animals live
B. Provides the necessary nutrients needed by plants
C. Serves as a place where people live
D. All of the above
Answer:
1. B
2. A
3. C
4. C
5. D
Explanation:
Soil is regarded as the solid unconsolidated material of the earth crust. Soil is of three different types namely: Sandy soil, clay soil and loamy soil. These three different soil types possess different properties that distinguish them. Some of them are:
- CLAY soil is characterized as having the finest particles and can hold greater amount of water i.e. have a high water holding capacity.
- LOAMY SOIL is the best soil type for planting agricultural crops because it has the highest concentration of nutrients that suited for plant growth.
- loamy, Sandy and clay differ in how we feel when touched i.e. texture, and colour.
- SANDY soils are the kind of soils that are found in Sea shores and beaches.
- Soil is important to living things as it forms part of the earth where animals live, provides the necessary nutrients needed by plants, serves as a place where people live.
Answer:
instrumental music is used in festivals, rituals, etc.
Explanation:
The chemical equation will be;
(NH4)2S(aq)+SrCl2(aq)→ 2 NH4Cl(aq) + SrSO4(s)
Keywords: Chemical reactions, precipitation reactions, chemical equations
Level: High school
Subject: Chemistry
Topic: Chemical reactions
Sub-topic: Precipitation reactions
No reaction is expected when (NH4)2S(aq) and SrCl2(aq) are mixed, as solubility rules suggest no insoluble salts will form, leading to NOREACTION.
When (NH4)2S(aq) and SrCl2(aq) are mixed together, we expect a reaction where the cations (NH4+ and Sr2+) and anions (S2- and Cl-) exchange partners if any of them can form an insoluble salt. Looking at solubility rules, we know that most sulfides are insoluble except those of alkali metals and ammonium, and most chlorides are soluble except for Ag+, Pb2+, and Hg22+. Given that neither NH4+ nor Sr2+ forms an insoluble chloride and SrS is not listed as an insoluble sulfide, we can predict that no visible reaction will occur when these solutions are mixed. Therefore, the chemical equation to represent this mixture is NOREACTION.
#SPJ12
Answer:
The reaction releases energy
Explanation:
The products of an exergonic reaction have a lower energy state (Delta-G) compared to the reactants. Therefore there is a negative delta –G between products and reactants after the reactions. This means some energy is lost into the environment usually through light or heat.
Exergonic reactions are characterized by a net release of energy but they still require a small initial energy input to start, referred to as the 'activation energy'. The speed or direction of the reaction is not determined by whether it's exergonic.
In the context of chemical reactions, the true statement for all exergonic reactions is that such reactions result in a net release of energy. However, even exergonic reactions, which are characterized by energy release, require a small initial input of energy to get started. This initial energy demand is referred to as the 'activation energy'. Also, it's important to note that the speed of the reaction or its directionality (whether it proceeds only in a forward direction) are not inherently determined by whether a reaction is exergonic. These aspects depend on other reaction conditions and catalysis.
#SPJ3
the specific heat of the resulting Nacl solutions is 4.06j/gc
calculate the heat of neutralisation of hcl and naoh in kj/mol nacl products
Answer:
62.12kJ/mol
Explanation:
The neutralization reaction of HCl and NaOH is:
HCl + NaOH → NaCl + H₂O + HEAT
You can find the released heat of the reaction and heat of neutralization (Released heat per mole of reaction) using the formula:
Q = C×m×ΔT
Where Q is heat, C specific heat of the solution (4.06J/gºC), m its mass and ΔT change in temperature (27.5ºC-20.0ºC = 7.5ºC).
The mass of the solution can be finded with the volume of the solution (50.0mL of HCl solution + 50.0mL of NaOH solution = 100.0mL) and its density (1.02g/mL), thus:
100.0mL × (1.02g / mL) = 102g of solution.
Replacing, heat produced in the reaction was:
Q = C×m×ΔT
Q = 4.06J/gºC×102g×7.5ºC
Q = 3106J = 3.106kJ of heat are released.
There are 50.0mL ×1M = 50.0mmoles = 0.0500 moles of HCl and NaOH that are reacting releasing 3.106kJ of heat. That means heat of neutralization is:
3.106kJ / 0.0500mol of reaction =
Answer:
The free energy = -20.46 KJ
Explanation:
given Data:
Pb²⁺ = 0.750 M
Br⁻ = 0.232 M
R = 8.314 Jk⁻¹mol⁻¹
T = 298K
The Gibb's free energy is calculated using the formula;
ΔG = ΔG° + RTlnQ -------------------------1
Where;
ΔG° = standard Gibb's freeenergy
R = Gas constant
Q = reaction quotient
T = temperature
The chemical reaction is given as;
Pb²⁺(aq) + 2Br⁻(aq) ⇄PbBr₂(s)
The ΔG°f are given as:
ΔG°f (PbBr₂) = -260.75 kj.mol⁻¹
ΔG°f (Pb²⁺) = -24.4 kj.mol⁻¹
ΔG°f (2Br⁻) = -103.97 kj.mol⁻¹
Calculating the standard gibb's free energy using the formula;
ΔG° = ξnpΔG°(product) - ξnrΔG°(reactant)
Substituting, we have;
ΔG° =[1mol*ΔG°f (PbBr₂)] - [1 mol *ΔG°f (Pb²⁺) +2mol *ΔG°f (2Br⁻)]
ΔG° =(1 *-260.75 kj.mol⁻¹) - (1* -24.4 kj.mol⁻¹) +(2*-103.97 kj.mol⁻¹)
= -260.75 + 232.34
= -28.41 kj
Calculating the reaction quotient Q using the formula;
Q = 1/[Pb²⁺ *(Br⁻)²]
= 1/(0.750 * 0.232²)
= 24.77
Substituting all the calculated values into equation 1, we have
ΔG = ΔG° + RTlnQ
ΔG = -28.41 + (8.414*10⁻³ * 298 * In 24.77)
= -28.41 +7.95
= -20. 46 kJ
Therefore, the free energy of reaction = -20.46 kJ
To calculate the reaction free energy ΔG for this reaction, we need to use the standard free energy of formation values given in a data tab, the stoichiometry of the reaction, and the specific conditions of the reaction, including the concentrations of Pb2+ and Br−. After a series of calculations, we will get the ΔG value in joules, which can be converted to kilojoules.
The task here is to calculate the reaction free energy ΔG for the Pb2+(aq) + 2Br−(aq) = PbBr2(s) reaction at 25.0°C. From the given information, we can start by calculating the number of moles of PbBr2 from its mass. Then, referring to the thermodynamic data tab of the ALEKS, we find the standard free energy of formation (ΔGf°) values for Pb2+(aq), Br−(aq), and PbBr2(s). Now, we can use these values and the definition of ΔG for a reaction in terms of ΔGf° values and stoichiometry.
ΔG = ΣΔGf°(products) - ΣΔGf°(reactants).
Note that the equation must be balanced so each ΔGf° value is multiplied by the stoichiometric coefficient of that substance in the reaction. It is also important to remember to convert the answer to kilojoules if the ΔGf° values are given in joules/mole. Lastly, the concentrations of Pb2+ and Br− are included in the reaction quotient Q to show the reaction's non-standard conditions.
#SPJ12