Please help brainiest will give you!Find the slope of it!
A. -3
B. -1/3
C. 1/3
D. 3

Answers

Answer 1
Answer: The correct answer is B

Related Questions

Betty's bite-size candies are packaged in bags. The number of candies per bag is normally distributed, with a mean of 50 candies and a standard deviation of 3. At a quality control checkpoint, a sample of bags is checked, and 4 bags contain fewer than 47 candies. How many bags were probably taken as samples?
How do I find precentges of money
Find the relative extrema of f(x) = 1+8x − 3x^2
The mean score on a calculus exam was 40, and the standard deviation was 5. The teacher decided to double everyone’s score and then added 7 points. What are the values of the mean and standard deviation of the distribution of transformed exam scores? (Options: mean = 80 and standard deviation = 5, mean = 80 and standard deviation = 10, mean = 87 and standard deviation = 5, mean = 87 and standard deviation = 10, mean = 87 and standard deviation = 17)
The slope of the line passing through the points (2, 7) and (-4, 8) is -6 -1/2 -1/6

Manny makes dinner using 1 box of pasta and 1 jar of sauce. if pasta is sold in packages of 6 boxes and sauce is sold in packages of 3 jars, what is the least number of dinners that Manny can make without any supplies leftover?

Answers

You need to find the least common multiple of 6 and 3. This the minimum whole number that contains the number of boxes in one package of pasta and the number of jars in one package of sauce. t he least common multiple of 6 and 3 is 6. This means that Manny can make 6 dinners, which will be made with 1 package of pasta (6 boxes ) and two packages of sauce (2 * 3 = 6 jars).

Find the volume and the lateral area of a frustum of a right circular cone whose radii are 4 and 8 cm, and slant height is 6 cm.A chimney, 100 ft. high, is in the form of a frustum of a right circular cone with radii 4 ft. and 5 ft. Find the lateral surface area of the chimney.
The volume of a frustum of a right circular cone is 52π ft3. Its altitude is 3 ft. and the measure of its lower radius is three times the measure of its upper radius. Find the lateral area of the frustum.
A frustum of a right circular cone has an altitude of 24 in. If its upper and lower radii are 15 in. and 33 in., respectively, find the lateral area and volume of the frustum.
In a frustum of a right circular cone, the radius of the upper base is 5 cm and the altitude is 8√3cm. If its slant height makes an angle of 60° with the lower base, find the total surface area of the frustum.
A water tank in the form of an inverted frustum of a cone has an altitude of 8 ft., and upper and lower radii of 6 ft. and 4 ft., respectively. Find the volume of the water tank and the wetted part of the tank if the depth of the water is 5 ft.
The total surface area of a frustum of a right circular cone is 435π cm2, and the base areas are 81π cm2 and 144π cm2. Find the slant height and the altitude of the frustum.
The base edges of a frustum of a regular pentagonal pyramid are 4 in. and 8 in., and its altitude is 10 in. Find the volume and the total area of the frustum.
Find the volume of a frustum of a regular square pyramid if the base edges are 14 cm and 38 cm, and the measure of one of its lateral edges is 24 cm.
Find the volume of a frustum of a regular square pyramid if the base edges are 7 cm and 19 cm, and the lateral edge is inclined at an angle of 60° with the lower base.
Find the volume of a frustum of a regular square pyramid if the base edges are 13 cm and 29 cm, and the lateral edge is inclined at an angle of 45° with the lower base.
The base edges of a frustum of a regular square pyramid measure 20 cm and 60 cm. If one of the lateral edges is 75 cm, find the total surface area of the frustum.
A frustum of a regular hexagonal pyramid has an upper base edge of 16 ft. and a lower base edge of 28 ft. If the lateral area of the frustum is 1,716 ft.2, find the altitude of the frustum.
A regular hexagonal pyramid has an upper base edge of 16 ft. and a lower base edge 28 ft. If the volume of the frustum is 18,041 ft.3, find the lateral area of the frustum.
The lateral area of a frustum of a regular triangular pyramid is 1,081 cm2, and the altitude and lateral edge are 24 cm and 26 cm, respectively. Find the lengths of the sides of the bases.

Answers

the complete answers in the attached figure

Part 1) we have

r=4cm\n R=8 cm\n L=6cm

Find the height h

h^(2)=L^(2) -(R -r)^(2)\n h^(2)=6^(2) -(8-4)^(2)\n h^(2)=36-16\n h=√(20) cm

Find the volume

V=(1)/(3)\pi[R^(2) +r^(2) +Rr]h\n\n V=(1)/(3)\pi[8^(2) +4^(2) +8*4]√(20)\n \n V=(1)/(3)\pi[112]√(20)\n \n V=524.52 cm^(3)

Find the lateral area

LA=\pi (R+r)L\n LA=\pi *(8+4)*6\n LA=226.19 cm^(2)

the answer Part 1) is

a) the volume is equal to 524.52 cm^(3)

b) The Lateral area is equal to 226.19 cm^(2)

Part 2) we have

r=4ft\n R=5 ft\n h=100 ft

Find the slant height L

L^(2)=h^(2)+(R -r)^(2)\n L^(2)=100^(2) +(5-4)^(2)\n L^(2)=10000+1\n L=√(10001) ft

Find the lateral area

LA=\pi (R+r)L\n LA=\pi *(5+4)*√(10001)\n LA=2,827.57 ft^(2)

the answer part 2) is

a) The Lateral area is equal to 2,827.57 ft^(2)

Part 3) we have

V=52\pi ft^(3) \n h=3ft\n R=3r

Step 1

Find the values of R and r

V=(1)/(3)\pi[R^(2) +r^(2) +Rr]h

substitute R=3r in the formula above

V=(1)/(3)\pi[(3r)^(2) +r^(2) +(3r)*r]*3

V=(1)/(3)\pi[7r)^(2)]*3

V=[tex] 52\pi

52\pi =\pi [7r^(2) ]\n r^(2) =(52)/(7) \n \n r=2.73 ft

R=3*2.73\n R=8.19 ft

Step 2

Find the slant height L

L^(2)=h^(2)+(R -r)^(2)\n L^(2)=3^(2) +(8.19-2.73)^(2)\n L^(2)=38.81\n L=6.23 ft

Step 3

Find the lateral area

LA=\pi (R+r)L\n LA=\pi *(8.19+2.73)*6.23 LA=213.73 ft^(2)

the answer Part 3) is

a) The lateral area is equal to 213.73 ft^(2)

Part 4) we have

r=15 in\n R=33 in\n h=24 in

Find the slant height L

L^(2)=h^(2)+(R -r)^(2)\n L^(2)=24^(2) +(33-15)^(2)\n L^(2)=576+324\n L=30 in

Find the lateral area

LA=\pi (R+r)L\n LA=\pi *(33+15)*30\n LA=4,523.89 in^(2)

Find the volume

V=(1)/(3)\pi[R^(2) +r^(2) +Rr]h\n\n V=(1)/(3)\pi[33^(2) +15^(2) +33*15]24\n \n V=(1)/(3)\pi[112]24\n \n V=142.83 in^(3)

the answer is

a) The lateral area is equal to 4,523.89 in^(2)

b) the volume is equal to 142.83 in^(3)

Part 5) we have

r=5 cm\n h=8√3 cm

Step 1

Find the value of (R-r)

tan 60=√(3)

tan 60=((R-r))/(8√(3)) \n\n R-r= √(3) *8√(3) \n R-r=24 cm\n R=24+r\n R=24+5\n R=29 cm

Step 2

Find the value of slant height L

L^(2)=h^(2)+(R -r)^(2)\n L^(2)=(8√(3))^(2)+(24-5)^(2)\n L^(2)=192+361\n L=23.52 cm

Step 3

Find the lateral area

LA=\pi (R+r)L\n LA=\pi *(24+5)*23.52\n LA=2,142.82 cm^(2)

Step 4

Find the total area

total area=lateral area+area of the top+area of the bottom

Area of the top

r=5 cm\n A=\pi *r^(2) \n A=\pi *25\n A=78.54 cm^(2)

Area of the bottom

r=24 cm\n A=\pi *r^(2) \n A=\pi *576\n A=1,809.56 cm^(2)

Total surface area

SA=2,142.82+78.54+1,809.56\n SA=4,030.92 cm^(2)

the answer is

a) The total surface area is 4,030.92 cm^(2)

Part 6)

Part a) Find the volume of the water tank

we have

r=4 ft\n R=6 ft\n h=8 ft

Step 1

Find the volume

V=(1)/(3)\pi[R^(2) +r^(2) +Rr]h\n\n V=(1)/(3)\pi[6^(2) +4^(2) +6*4]8\n \n V=(1)/(3)\pi[76]8\n \n V=636.70 ft^(3)

the answer Part a) is 636.70 ft^(3)

Part b) Find the volume of the wetted part of the tank if the depth of the water is 5 ft

by proportion find the radius R of the upper side for h=5 ft

((R1-r))/(8) =((R2-r))/(5) \n\n ((6-4))/(8) =((R2-4))/(5)\n \n(R2-4)= 1.25\n R2=4+1.25\n R2=5.25 ft

Find the volume for R2=5.25 ft

V=(1)/(3)\pi[R^(2) +r^(2) +Rr]h\n\n V=(1)/(3)\pi[5.25^(2) +4^(2) +5.25*4]5\n \n V=(1)/(3)\pi[64.56]5\n \n V=338.05 ft^(3)

the answer Part b) is 338.05 ft^(3)

Part 7) we have

SA=435\pi cm^(2) \n A1=144\pi cm^(2)\n A2=81\pi cm^(2)

Step 1

Find the value of R and the value of r

A1=\pi *R^(2) \n 144\pi =\pi *R^(2)\n R=12 cm

A2=\pi *r^(2) \n 81\pi =\pi *r^(2)\n r=9 cm

Step 2

Find the value of lateral area

LA=SA-A1-A2\n LA=435\pi -144\pi -81\pi \n LA=210\pi cm^(2)

Step 3

Find the slant height

LA=\pi (R+r)L\n\n L=(LA)/(\pi(R+r)) \n \n L=(210\pi)/(\pi(12+9)) \n \n L=10 cm

Find the altitude of the frustum

h^(2) =L^(2) -(R-r)^(2) \n h^(2) =10^(2) -(12-9)^(2)\n h^(2)=91\n h=9.54 cm

the answer Part a) is

the slant height is 10 cm

the answer Part b) is

the altitude of the frustum is 9.54 cm

Find the volume and the lateral area of a frustum of a right circular cone whose radii are 4 and 8 cm, and slant height is 6 cm.
h= √(s^2-(R_1-R_2)^2) \n = √(6^2-(4-8)^2) \n = √(36-16) \n = √(20)
Volume= (1)/(3) \pi h(R_1^2+R_1R_2+R_2^2) \n = (1)/(3) \pi * √(20) (4^2+4 * 8+8^2) \n = (1)/(3) \pi √(20) (16+32+64) \n = (1)/(3) \pi √(20) (112) \n =524.5cm^3
Lateral area = Total surface area - area of base - area of top
Lateral \ area= \pi (R_1+R_2)s \n = \pi (4+8) * 6 \n =12 \pi * 6 \n =72 \pi \n =226.2cm^2

Simplify (3x + 5) + (2x - 9) - (4x + 3).

Answers

The answer is x-7
(3x+2x-4x)+(5+-9-3)
(5x-4x)+(-4-3)
(1x)+(-7)
x-7

Function f(x) is represented on the graph. Which statement identifies the effect of replacing f(x) with 1/2f(x) on the graph? A)The curve would remain the same size but would be flipped upside down. B)The curve would remain the same size but would shift to the left. C)The curve would be narrower, but the vertex would be in the same position. D)The curve would be wider, but the vertex would be in the same position.

Answers

Answer:

Option (D)

Step-by-step explanation:

If a function f(x) is represented on a graph and we follow the transformation as,

f(x) → k.f(x)

1). If k ≥ 1, graph of the parent function f(x) will be stretched vertically by a factor k.

That means the transformed graph will be narrower.

2). If 0 < k < 1, graph will be vertically compressed or the transformed function will show a wider graph.

Following this rule,

f(x) → (1)/(2).f(x) shows k = (1)/(2) [Since 0 < (1)/(2) < 1]

Therefore, transformed form will be wider.

Option (D) will be the answer.

Suppose you deposit $5,000 in a savings account that earns 3% annual interest. If you make no other withdrawals or deposits, how many years will it take the account balance to reach at least $6,000? A. 10 years. B. 6 years. C. 7 years. D. 4 years

Answers

You need to use the equation y=p(1+r)^t where p= the principle (initial amount), r= the rate of decay or growth, and t= the time. So y=5,000(1.03)^x is the equation you'd want to use. At 6 years you'd have $5,970.3 and at 7 $6,149.40, so the answer is C.
taking into consideration that the interest is compound (yearly) 
the amount of money gather through the years can be calculated by 

A = P (1+r)^(t)
6000 = 5000 (1.03)^t

t = ln(6000/5000)/ln(1.03) = 6.16 ≈ 7

c. 7 years

What ways can you collect 82 cents ? Using 13 coins .

Answers

saving up or just ask your mom for miney