Answer: agree
Explanation: because there is always a force that causes motion..
Also I’m back
Where’s the old gang?
Newton's first law of motion states that an object in motion will continue to move at a constant speed in a straight line unless acted upon by an external force. So, not all objects in motion require a force to keep them in motion.
According to Newton's first law of motion, an object in motion will continue to move at a constant speed in a straight line unless acted upon by an external force. So, it is not true that any object in motion must experience a force to keep it in motion. The force is only necessary to change the object's state of motion, such as slowing it down or altering its direction.
For example, imagine a hockey puck sliding on a frictionless ice rink. Once given an initial push, the puck will continue moving at a constant speed in a straight line until it encounters an external force, such as contact with the boards or another player.
Therefore, I disagree with the student's claim. An object in motion does not necessarily need a force to keep it in motion, but rather a force is required to change its state of motion.
#SPJ3
Answer:
From the answer choices, it would be volume.
Explanation:
Just trust me here
Answer:
The characteristics of water waves is that it travels through the waver, the particles travel in clockwise circles. The radius of the circles decreases as the depth into the water increases.
Explanation:
Answer:
f(t) = 28,7 [N]
Explanation: IMPORTANT NOTE: IN PROBLEM STATEMENT CHARGES ARE IN C (COULOMBS) AND IN THE DIAGRAM IN μC. WE ASSUME CHARGES ARE IN μC.
The net force on +q₂ is the sum of the force of +q₁ on +q₂ ( is a repulsion force since charges of equal sign repel each other ) and the force of -q₃ on +q₂ ( is an attraction force, opposite sign charges attract each other)
The two forces have the same direction to the right of charge q₂, we have to add them
Then
f(t) = f₁₂ + f₃₂
f₁₂ = K * ( q₁*q₂ ) / (0,1)²
q₁ = + 8 μC then q₁ = 8*10⁻⁶ C
q₂ = + 3,5 μC then q₂ = 3,5 *10⁻⁶ C
K = 9*10⁹ [ N*m² /C²]
f₁₂ = 9*10⁹ * 8*3,5*10⁻¹²/ 1*10⁻² [ N*m² /C²]* C*C/m²
f₁₂ = 252*10⁻¹ [N]
f₁₂ = 25,2 [N]
f₃₂ = 9*10⁹*3,5*10⁻⁶*2,5*10⁻⁶ /(0,15)²
f₃₂ = 78,75*10⁻³/ 2,25*10⁻²
f₃₂ = 35 *10⁻¹
f₃₂ = 3,5 [N]
f(t) = 28,7 [N]
Answer:
facts
Explanation: