72.7% is the percent by mass of oxygen in carbon dioxide. A percent is obtained by multiplying the result by 100.
One approach to show the concentration for an element within a compound or component in a combination is as a mass percentage. The mass percentage is computed by dividing the total weight of the combination by the mass of each component and multiplying the result by 100%. The mass percent is calculated by dividing the mass that contains the compound and solute by the mass for the element or solute.
Molar mass of oxygen = 32 g/mole
Molar mass of carbon dioxide = 44 g/mole
mass percentage of oxygen =(molar mass of oxygen/molar mass of carbon dioxide)× 100
=(32/44)× 100
=72.7%
To know more about mass percentage, here:
#SPJ6
Answer : The percent by mass of oxygen in carbon dioxide is, 72.72%
Solution : Given,
Molar mass of oxygen = 16 g/mole
Molar mass of carbon dioxide = 44 g/mole
As we know that there are 2 atoms of oxygen and 1 atom of carbon present in the carbon dioxide.
So, the molar mass of oxygen, = 2 × 16 = 32 g/mole
Now we have to calculate the percent by mass of oxygen in carbon dioxide.
Now put all the given values in this expression, we get
Therefore, the percent by mass of oxygen in carbon dioxide is, 72.72%
B- active volcano
C- extinct volcano
D-lava filled volcano
Answer:
B active volcano
Explanation:
Answer:
Electronegativity, symbol χ, is a chemical property that describes the tendency of an atom to attract a shared pair of electrons (or electron density) towards itself. An atom's electronegativity is affected by both its atomic number and the distance at which its valence electrons reside from the charged nucleus.
Explanation:
Answer:
Yes
Explanation:
The higher the electronegativity the higher tendency to attract electrons, the lower the electronegativity the higher tendency to give away electrons/lose electrons.
(2) Energy is created when the gas particles collide
(3) There are no attractive forces between the gas particles
(4) The distance between the gas particles is small, compared to their size.