Answer:
saaaaame
Explanation:
A. the same direction as the current.
B. a clockwise direction.
C. a counterclockwise direction.
D. the direction opposite to the current.
Answer: b. a clockwise direction
Explanation: just took the test
Answer:
B. Sun was the center of the solar system.
Answer:
Explanation:
THE EXPERT IS WRONG IT IS
4.6 and 3.3
The exchange particles you are talking about are probably the gauge bosons. They are elementary bosons, meaning that they are elementary particles making part of the standard model and they have integer spin. There are four of them: The photon, the gluon, the W+ and W- bosons and the Z boson. The photon basically is the particle of light being an excitation, if you will, of the electromagnetic field so that is mediates the electromagnetic force. The only thing that differs from long range photons (light) is that they are what is called virtual photons but that is for another subject. Then you have the gluons that come in 8 varieties and their role is to interchange the color charge in between quarks so that it mediates the strong nuclear force, the force that keeps quarks bounded into protons. And then finally there are the W+, W- and Z bosons that mediates this time, the weak nulear force, the force that allows protons to coexist in the nucleus of atoms with neutrons. I hope that helped you, but as i usually do, i tried to simplify my answer beacause i could have written a lot mor about that!
B) f = mgsin(?)
C) f > mgcos(?)
D) f = mgcos(?)
E) f > mgsin(?)
When the block is at rest, the static frictional force is equal to the horizontal component of the block's weight (F = mgsin(θ)).
The static frictionalforce on the body at rests is determined by applying Newton's second law of motion.
F = ma
where;
If the block is at rest, then the net horizontal force on the block is zero.
Thus, when the block is at rest, the static frictional force is equal to the horizontal component of the block's weight.
Learn more here:brainly.com/question/13758352
Answer:
Option B
Explanation:
For a system of block on inclined ramp shown in the attached image. From the attached image, the Normal force N, weight mg and frictional force f act on the block. The sum of vertical forces should be zero just as sum of vertical forces should be zero when the system is in equilibrium condition.
Taking sum of forces along the inclined plane we deduce that
[tex]f=mgsin \theta[tex]
Therefore, option B is the correct option.
An ideal ammeter has zero resistance to avoid altering the current it measures, while an ideal voltmeter has infinite resistance to prevent drawing current from the device it's measuring the voltage of.
The resistance of an ideal ammeter is zero ohms. This ensures that it doesn't interfere with the current it is measuring. An ammeter is connected in series with the circuit, and if the resistance were greater than zero, it would decrease the amount of current circulating in the circuit.
On the other hand, an ideal voltmeter has infinite resistance. This happens because a voltmeter is connected in parallel with a device to measure its voltage, and to avoid drawing current from the device, an ideal voltmeter should have infinite resistance.
#SPJ6