Answer:
2 remainder 5 ily
Step-by-step explanation:
A. A Pair of intersecting lines
B. A Parabola
C. A Point
D. A Pair of parallel lines
Answer:its D. A pair of parallel lines
Step-by-step explanation:
Answer: parallel lines
Step-by-step explanation:
Answer:
C= -145, (35/4, 295/8, 45)
Step-by-step explanation:
Use Gaussian elimination to find the values of x, y and z
Eq 1: -x+2y-z=20
Eq 2: x-2y+2z=25
Eq 3: 2x+4y-3z=30
Eq 1: (-x+2y-z=20 ) × 1
Eq 2: x-2y+2z=25
Eq 3: 2x+4y-3z=30
⇒ Eq1: -x+2y-z=20
Eq2: z= 45
Eq 3: 2x+4y-3z=30
Eq1: (-x+2y-z=20 ) × 2
Eq2: z= 45
Eq3: 2x+4y-3z=30
⇒ Eq1: -x+2y-z=20
Eq2: z= 45
Eq3: 8y-5z= 70
Eq 1: -x+2y-z=20
Eq 3: 8y-5z= 70
Eq 2: z= 45
Z=45
y= 295/8
x= 35/4
C= -145
a)
1 2 3 4 5 6
b)
0 1 2 3 4 5 6
C)26
O i 2 3 4
D)5
0 1 2
3 4 5
6
A
B
оооо
С
D
A. y ≤ −2x + 3
y ≤ x + 3
B. y ≥ −2x + 3
y ≥ x + 3
C. y ≤ −3x + 2
y ≤ −x + 2
D. y > −2x + 3
y > x + 3
An ordinary Regression model that treats the response Y is (a) True False, (w) True
What is Regression?
A statistical method called regression links a dependent variable to one or more independent (explanatory) variables.
A regression model can demonstrate whether changes in one or more of the explanatory variables are related to changes in the dependent variable.
A) Models for numerical response variable, like ANOVA and linear regression are special cases of GLMs
for these model the following holds
1. Random component has a normal distribution
2. Systematic component α+β₁x₁+β₂x₂+...........βₓxₓ
3. link function = identity (g(µ)=µ)
GLMs can generalise these models with response Y as normally distributed, hence the statement is True
B) With a GLM. Y does not need to have a normal distribution and one can model a function of the mean of Y instead of just the mean itself. but in order to get ML estimates the variance of Y must be small. This small variance of Y is the reason for ML estimator to be the best one. hence the statement is false.
An ordinary Regression model that treats the response Y is (a) True False, (w) True
To learn more about Regression Visit:
#SPJ4