Answer:
Explanation:
Hello!
In this case, since we volume, pressure and temperature which are all changing, we can use the combined ideal gas law to write:
Thus, since the final volume V2 is required, by solving for it, we write:
In such a way, we plug in the given data to obtain:
Which means that the process compressed the gas.
Best regards.
To find the new volume, we can use the combined gas law equation.
To solve this problem, you can use the combined gas law equation, which relates the initial and final conditions of pressure, volume, and temperature.
The combined gas law equation is: P1 * V1 / T1 = P2 * V2 / T2
Substituting the given values into the equation, we can solve for the new volume:
(3.36 atm * 15.0 L) / 298 K = (5.60 atm * V2) / 383 K
Simplifying and solving for V2, the new volume, we find V2 = 11.78 L.
#SPJ3
Answer:
181.39g of AlCl3 is produced
Explanation:
We'll begin by writing the balanced equation for the reaction. This is given below:
3CuCl2•2H2O + 2Al → 2AlCl3 + 6H2O + 3Cu
Next, we shall determine the mass of Al that reacted and the mass of AlCl3 produced from the balanced equation. This is illustrated below:
Molar mass of Al = 27g/mol
Mass of Al from the balanced equation = 2 x 27 = 54g
Molar mass of AlCl3 = 27 + (3x35.5) = 133.5g/mol
Mass of AlCl3 from the balanced equation = 2 x 133.5 = 267g
Summary:
From the balanced equation above,
54g of Al reacted to produce 267g of AlCl3.
Next, we shall determine the theoretical yield of AlCl3. This can be achieved as shown below:
From the balanced equation above,
54g of Al reacted to produce 267g of AlCl3.
Therefore, 54.81g of Al will react to produce = (54.81 x 267)/54 = 271.01g of AlCl3.
Therefore, the theoretical yield of AlCl3 is 271.01g.
Finally, we shall determine the actual yield of AlCl3 produced from the reaction.
This can be obtain as follow:
Percentage yield of AlCl3 = 66.93%
Theoretical yield of AlCl3 = 271.01g
Actual yield of AlCl3 =?
Percentage yield = Actual yield/Theoretical yield x 100
66.93% = Actual yield /271.01g
Actual yield = 66.93% x 271.01
Actual yield = 66.93/100 x 271.01g
Actual yield = 181.39g.
Therefore, 181.39g of AlCl3 is produced from the reaction.
(B) H2S
(C) SO3
(D) PCl3
(E) CH2Cl2
(F) NO2
Answer:
D and E
Explanation:
D. PCl3
E. CH2Cl2
Answer:
The final pressure of the gas is:- 21.3 kPa
Explanation:
Using Boyle's law
Given ,
V₁ = 10.0 L
V₂ = 45.0 L
P₁ = 96.0 kPa
P₂ = ?
Using above equation as:
The final pressure of the gas is:- 21.3 kPa
phosphate (Ca3(PO4)2), a major component of bone.
% Ca
%P
% 0
Answer:
38.7%
41.3%
20%
Explanation:
The percentage composition helps to know the what percent of the total mass of a compound is made up of each of the constituent elements or groups.
To solve this problem:
Compound:
Ca₃(PO₄)₂
Formula mass = 3(40) + 2[31 + 4(16)]
= 120 + 2(95)
= 120 + 190
= 310
%C = x 100 = 38.7%
%P = x 100 = 41.3%
%O = x 200 = 20%
A. 200
B. 330
C. 400
D. 110
E. 88
Answer:
The correct answer is option B.
Explanation:
In this problem we assumed that heat given by the hot body is equal to the heat taken by the cold body.
where,
= specific heat of metal =
= specific heat of coffee=
= mass of metal = x
= mass of coffee = 0.3 kg
= final temperature of aluminum metal=
= initial temperature of aluminum metal =
= initial temperature of coffee=
Now put all the given values in the above formula, we get
Mass of aluminum cubes = 0.3333 kg = 333.3 g
If mass of 1 cube is 1 gram, then numbers of cubes in 333.3 grams will be:
330 cubes of aluminum cubes will be required.
A property that will NOT change if temperature changes
A property that changes if the amount of substance changes
A property that does NOT change if the amount of substance changes
Help :( pls
Answer:
A property that changes if the amount of substance changes
Explanation:
An extensive property is a property that depends on the amount of matter in a sample.
An extensive property changes if the amount of substance changes. For instance, mass and volume are extensive properties as they would vary depending on the amount of substance.
An extensive property is a property that changes if the amount of substance changes. For example, mass and volume are extensive properties. If you have two separate samples of a substance, each with a different amount, their mass and volume would be different. On the other hand, the melting point or boiling point of the substance, which are examples of intensive properties, would not change regardless of the amount of substance.
#SPJ12