Answer:
The mass of the object is 0.2 kg
Explanation:
The magnitude of the applied force = 2.0 N
The duration of application of the force = 0.1 second
The increase in velocity given to the body by the force = 1.0 m/s
From the equation of motion under acceleration, we have;
v = u + a·t
Therefore;
a = (v - u)/t
Where;
v = The final velocity
u = The initial velocity
t = The time taken for the change in velocity = 0.1 s
Given that the change in velocity = 1 m/s, we have;
v - u = 1 m/s
∴ a = (v - u)/t = 1 m/s/(0.1 s) = 10 m/s²
The acceleration, a = 10 m/s²
The equation for the applied force, F is F = Mass, m × Acceleration, a
Therefore, when the applied force, F = 2.0 N, and the acceleration, a is a = 10 m/s², we have;
F = Mass, m × Acceleration, a
2.0 N = Mass of the object × 10 m/s²
∴ Mass of the object = 2.0 N/10 m/s² = 0.2 kg
The mass of the object = 0.2 kg.
refraction
superposition
diffraction
Answer : diffraction
Explanation : Diffraction is the phenomenon of bending of sound waves around the small openings or obstacles.
Tierra is playing in her backyard when she hears her friend calling out to her. Tierra can hear her friend even when she can't see her. This is because the sound is spreading out from the small openings and hence diffraction of sound wave occurs.
Answer:
d all of the above are correct
b. polar
c. arctic
d. tropical
Answer:
When the masses drop, they move with the same angular velocity as you before hitting the ground. i.e., they leave your hand with their angular momentum. So, in one view, you can think the mass decreases, which means the moment of inertia also decreases. Therefore, the angular velocity should increase.