Answer:
NiCO3
Explanation:
Reactants take 504.87 yr to reach 12.5% of their original value in first-order decomposition reaction.
....(1)
Here, is the final concentration, t is the time, is the initial concentration, and k is the rate constant.
Given:-
k=
Substitute the above value in equation (1) as follows:-
So, 504.87 yr does it take for the reactant to reach 12.5% of its original value.
Find more information about first- order decomposition reaction here:-
The time required for a reactant to reach 12.5% of its original value in a first-order reaction is approximately 1482 years, obtained by applying the formula for the half-life of a first-order reaction and multiplying by 3.
In a first-order reaction, the half-life of the reaction, which is the time it takes for half of the reactant to be consumed, is independent of the concentration of the reactant. Also, for a first-order reaction, it would take approximately 3 half-lives for the reactant to be reduced to 12.5% of its original value. The Integrated Rate Law for a First-Order Reaction can be applied to determine the time it will take.
Given the rate constant (k) is 0.00140 yr¯¹, we will use the formula for the half-life of a first-order reaction: t₁/₂ = 0.693 / k. After calculating the half-life (t₁/₂), multiply it by 3 to determine the time for the reactant concentration to reach 12.5% of its original value. Hence, it would take approximately 1482 years to reach 12.5% of the original value when rounded to the correct number of significant figures.
#SPJ12
B. its speed increases due to air resistance,
C. it moves at a constant speed,
<
OD. it moves at a constant velocity
Answer:
The answer is C!
Explanation:
Hope it helps
Answer D
Explanation: did the quiz ψ(`∇´)ψ
Answer:
An apple.
A person.
A table.
Air.
Water.
A computer.
Paper.
Iron.
Hope this helps you
Answer:
your boddy is made of mater and a clock too it is still a mater of time.
Explanation:
Molar mass of the weak base = 82.0343g/mole.
Note: pKa = -logKa
pKb = -logKb
pH + pOH = 14
[H+ ] [OH- ] = 10^-14
Answer:
11.39
Explanation:
Given that:
Given that:
Mass = 1.805 g
Molar mass = 82.0343 g/mol
The formula for the calculation of moles is shown below:
Thus,
Given Volume = 55 mL = 0.055 L ( 1 mL = 0.001 L)
Concentration = 0.4 M
Consider the ICE take for the dissociation of the base as:
B + H₂O ⇄ BH⁺ + OH⁻
At t=0 0.4 - -
At t =equilibrium (0.4-x) x x
The expression for dissociation constant is:
x is very small, so (0.4 - x) ≅ 0.4
Solving for x, we get:
x = 2.4606×10⁻³ M
pOH = -log[OH⁻] = -log(2.4606×10⁻³) = 2.61
pH = 14 - pOH = 14 - 2.61 = 11.39
The question is incomplete, complete question is ;
A deep-sea diver uses a gas cylinder with a volume of 10.0 L and a content of 51.8 g of and 33.1 g of He. Calculate the partial pressure of each gas and the total pressure if the temperature of the gas is 21°C.Express the pressures in atmospheres to three significant digits separated by commas.
Answer:
Partial pressure of the oxygen gas is 3.91 atm.
Partial pressure of the helium gas is 20.0 atm
Total pressure of the gases is 24.0 atm
Explanation:
Moles of oxygen gas =
Moles of helium gas =
Total moles of gas =
Volume of the cylinder = V = 10.0 L
Total pressure in the cylinder = P = ?
Temperature of the gas in cylinder = T = 21°C = 21 + 273 K = 294 K
PV = nRT ( ideal gas equation )
P = 23.88 atm ≈ 23.9
Partial pressure of the individual gas will be determined by the help of Dalton's law:
partial pressure = Total pressure × mole fraction of gas
Partial pressure of the oxygen gas
Partial pressure of the helium gas