Answer:
The rubber becomes brittle and can break in your hand. The explanation for why this happens concerns cross-linking bonds. Ultra-violet light from the sun provides the polymer molecules with the activation energy they need to be able to form more cross-links with other chains.
If excessively excessive cross-links are formed in rubber, it becomes overly rigid and brittle, hampering its natural elasticity and strength. The increase in cross-links restricts the moving of the polymer chains, undermining the effectiveness of the rubber in many applications.
The formation of cross-links in rubber significantly affects its properties. In the case where too many cross-links are formed, the rubber is likely to become overly rigid and brittle. This is because the cross-links restrict the movement of the polymer chains, which reduces flexibility and elasticity. As a result, too many cross-links can compromise the usefulness of rubber for many applications, which require its natural elasticity and strength. For example, in a rubber band, if too many cross-links were formed, then it would be less stretchy and snap more easily when stretched.
#SPJ2
A.
Only the Fe is unbalanced.
B.
Only the O is unbalanced
C.
Fe and O are both unbalanced.
D.
C and O are both unbalanced
These are two questions and two answers.
Question 1: Law of Conservation of Mass
Answer: option B. The total mass remains the same during a chemical reaction.
Explanation:
The law of conservation of mass is a universal law. It states that mass is mass is neither created or destroyed, but is is conserved.
In chemical reactions, that means that, always, the total mass of the reactants equals the total mass of the products or, as the option B. states, during a chemical reaction the total mass remains the same.
Since, in chemical reactions, the atoms are not modified (the atoms just bond in different form or with different atoms), that implies that total number of each kind of atoms in the reactants equals the total number of the same kind of atoms in the products.
That is the basis for balancing the chemical equations and for the stoicheometric calculations.
Question 2 . Which element(s) are not balanced in this equation?
Answer: option A. Only the Fe is unbalanced.
Explanation:
1) Given equation: Fe₂O₃ + 3 CO → Fe + 3 CO₂
2) Count the number of atoms of each kind on each side of the equation
i) Fe
reactant side: 2
product side: 1
Therefore, Fe is not balanced
ii) O
reactant side: 3 + 3 = 6
Product side: 3 × 2 = 6
Therefore, it is balanced
iii) C
reactant side: 3
product side: 3
Therefore, C is balanced.
3) Conclusion: Only the Fe is unbalanced.
For #1, the answer is B. The total mass remains the same during a chemical reaction.
For #2, given Fe2O3 + 3CO -> Fe + 3CO2
Fe is unbalanced, and O is also unbalanced
Therefore, Option C: Fe and O are both unbalanced, is true.
Answer: the mass of an electron is approximately 9.10938356 × 10^-31 kilograms (kg)
Explanation:
a. True
b. False