Answer:
The origin of science can be traced back to ancient Egypt and the Mesopotamia from about 3500 to 3000 BC. The achievements of these two civilizations in mathematics, astronomy, and medicine have reached and shaped the Greek natural philosophy in the classical era, and they usually formally try to explain events in the material world with natural causes . After the fall of the Western Roman Empire, in the first few centuries of the Middle Ages (approximately 400-1000 AD), knowledge about the ancient Greeks’ world concepts was gradually forgotten in Western Europe , while in the Muslim world of the Golden Age of Islam Was preserved in. From the 10th century to the 13th century, Western Europe retrieved the writings of ancient Greece and absorbed the research of Islamic scholars. Natural philosophy was revived, and then transformed in the scientific revolution that began in the 16th century The new ideas and discoveries during this period broke away from ancient Greek ideas and traditional methods. The rapid role of scientific method in acquiring knowledge, but the institutionalization and professionalization of science did not begin to take shape until the 19th century
Answer:
Temperature of water leaving the radiator = 160°F
Explanation:
Heat released = (ṁcΔT)
Heat released = 20000 btu/hr = 5861.42 W
ṁ = mass flowrate = density × volumetric flow rate
Volumetric flowrate = 2 gallons/min = 0.000126 m³/s; density of water = 1000 kg/m³
ṁ = 1000 × 0.000126 = 0.126 kg/s
c = specific heat capacity for water = 4200 J/kg.K
H = ṁcΔT = 5861.42
ΔT = 5861.42/(0.126 × 4200) = 11.08 K = 11.08°C
And in change in temperature terms,
10°C= 18°F
11.08°C = 11.08 × 18/10 = 20°F
ΔT = T₁ - T₂
20 = 180 - T₂
T₂ = 160°F
Answer:
1069.38 gallons
Explanation:
Let V₀ = 1.07 × 10³ be the initial volume of the gasoline at temperature θ₁ = 52 °F. Let V₁ be the volume at θ₂ = 97 °F.
V₁ = V₀(1 + βΔθ) β = coefficient of volume expansion for gasoline = 9.6 × 10⁻⁴ °C⁻¹
Δθ = (5/9)(97°F -52°F) °C = 25 °C.
Let V₂ be its final volume when it cools to 52°F in the tank is
V₂ = V₁(1 - βΔθ) = V₀(1 + βΔθ)(1 - βΔθ) = V₀(1 - [βΔθ]²)
= 1.07 × 10³(1 - [9.6 × 10⁻⁴ °C⁻¹ × 25 °C]²)
= 1.07 × 10³(1 - [0.024]²)
= 1.07 × 10³(1 - 0.000576)
= 1.07 × 10³(0.999424)
= 1069.38 gallons
To calculate the amount of gasoline that can be poured into the tank, we need to find the change in volume of the gasoline when its temperature changes from 97.0°F to 52.0°F. Using the equation for volume expansion, we can calculate this change in volume to be approximately 258 gallons.
To calculate the amount of gasoline that can be poured into the tank, we need to find the change in volume of the gasoline when its temperature changes from 97.0°F to 52.0°F. We can use the equation for volume expansion to calculate this change in volume:
ΔV = V₀ * β * ΔT
Where ΔV is the change in volume, V₀ is the initial volume, β is the coefficient of volume expansion, and ΔT is the change in temperature.
In this case, the initial volume V₀ is 1.07 * 10³ gallons, the coefficient of volume expansion β is 9.6 * 10⁻⁴ (°C)⁻¹, and the change in temperature ΔT is (52.0°F - 97.0°F) = -45.0°F.
Converting the change in temperature to Celsius: ΔT = (45.0°F) * (5/9) = -25.0°C.
Plugging in these values into the equation, we get:
ΔV = 1.07 * 10³ * 9.6 * 10⁻⁴ * -25.0 = -258 gallons.
Therefore, when the gasoline is poured into the tank, approximately 258 gallons will be poured out of the truck.
#SPJ3
A. For velocity, you must have a number, a unit, and a direction.
B. The SI units for velocity are m/s2.
C. The symbol for velocity is .
D. To calculate velocity, divide the displacement by time.
just took the quiz its A C and B
The volume of the air displaced by the balloon is less than the volume of the balloon
The weight of the air displaced is less than the volume of the balloon
The weight of the balloon is less than the weight of the air displaced by the balloon
A hot air balloon is a cloth wrap that contains several thousand cubic meters of air inside (a large volume of air). The burner (which is the motor of the balloon and responsible for its elevation) heats the liquid propane to a gaseous state to generate a huge flame, thus heating the air mass inside the balloon. In this way, its density is modified with respect to the air that surrounds it, because the hot air is lighter than the outside air (less dense), causing the balloon to rise and float.
Now, if we know that the density of a body is directly proportional to its mass and inversely proportional to its volume:
We can deduce that
This is proof of Archimedes' Principle:
A body totally or partially immersed in a fluid at rest, experiences a vertical upward thrust equal to the mass weight of the body volume that is displaced.
In this case the fluid is the air outside. So, the warm air inside the balloon, being less dense, will weigh less than the outside air and therefore will receive an upward pushing force or thrust that will make the balloon ascend.