Answer: 7kg I think or 6
Explanation:
Answer:
Please find the attached file for the figure.
Explanation:
Given that a bicyclist speeds along a road at 10 m/s for 6 seconds.
Its acceleration = 10/6 = 1.667 m/s^2
The distance covered = 1/2 × 10 × 6
Distance covered = 30 m
That is, displacement = 30 m
Then she stops for three seconds to make a 180˚ turn and then travels at 5 m/s for 3 seconds.
The acceleration = 5/3 = 1.667 m/s^2
The displacement = 1/2 × 5 × 3
Displacement = 7.5 m
The resultant acceleration will be equal to zero.
While the resultant displacement will be:
Displacement = 30 - 7.5 = 22.5 m
Please find the attached file for the sketch.
Answer:
The horizontal distance is 4.823 m
Solution:
As per the question:
Mass of man, m = 65.0 kg
Height of the hill, H = 5.00 m
Mass of the backpack, m' = 20.0 kg
Height of ledge, h = 2 m
Now,
To calculate the horizontal distance from the edge of the ledge:
Making use of the principle of conservation of energy both at the top and bottom of the hill (frictionless), the total mechanical energy will remain conserved.
Now,
where
KE = Kinetic energy
PE = Potential energy
Initially, the man starts, form rest thus the velocity at start will be zero and hence the initial Kinetic energy will also be zero.
Also, the initial potential energy will be converted into the kinetic energy thus the final potential energy will be zero.
Therefore,
where
v = velocity at the hill's bottom
Now,
Making use of the principle of conservation of momentum in order to calculate the velocity after the inclusion, v' of the backpack:
Now, time taken for the fall:
Now, the horizontal distance is given by:
x = v't =
Answer
given,
mass of the man = 65 kg
height = 5 m
mass of the back pack = 20 kg
skis off to 2.00 m high ledge
horizontal distance =
speed of the person before they grab back pack is equal to potential and kinetic energy
v = 9.89 m/s
now he perform elastic collision
v = 7.57 m/s
time taken by the skies to fall is
t = 0.6388 s
distance
d = v x t
d = 7.57 x 0.6388
d = 4.84 m
Answer:
The electric force on the proton is 8.2x10^-10 N
Explanation:
We use the formula to calculate the distance between two points, as follows:
r = ((x2-x1)^2 + (y2-y1)^2)^1/2, where x1 and x2 are the x coordinate, y2, y1 are the y coordinate. replacing values:
r = ((0.36-0)^2 + (0.39-0)^2)^1/2 = 0.53 nm = 5.3x10^-10 m
We will use the following expression to calculate the electrostatic force:
F = (q1*q2)/(4*pi*eo*r^2)
Here we have:
q1 = q2 = 1.6x10^-19 C, 1/4*pi*eo = 9x10^9 Nm^2C^-2
Replacing values:
F = (1.6x10^-19*1.6x10^-9*9x10^9)/((5.3x10^-10)^2) = 8.2x10^-10 N
When two bodies come into close touch with one another, a collision occurs. In this instance, the two bodies quickly exert forces on one another. The collision changes the energy and momentum of the bodies that are interacting.
Briefing
the system's initial kinetic energy, KEi, is equal to 0.5 * 4 * 1.8 2 plus 0.5 * 6 * 0.2 2 J.
KEi = 6.6 J
The system's ultimate kinetic energy, KEf
, following the collision is equal to 0.5 * 4 * 0.6 + 0.5 * 6 * 1.4 J.
KEf = 6.6 J
since KEi = KEf
Perfectly elastic is the collision
the appropriate response is A) completely elastic.
Visit: to learn more about absolutely elastic.
#SPJ4
Answer:
by a rocking chair, a bouncing ball, a vibrating tuning fork, a swing in motion, the Earth in its orbit around the Sun, and a water wave.
Explanation:
Answer:
At a higher velocity.