Answer : Not studied by many scientists.
Explanation : An emerging scientific idea should be something which is not commonly studied by most of the scientists. If it is found to be common with many scientific ideas then it may not be considered as emerging scientific idea. It has to be unique, different and innovative from rest of the ideas.
The best reagent and condition for a chemical reaction is dictated by the reactants at hand and the substance that you're trying to produce. For instance, to convert an alkene into an alcohol, Osmium Tetroxide (OsO4) at room temperature would be an example of an ideal reagent and condition.
In chemistry, when you are asked to place the best reagent and conditions in a reaction box, you are trying to predict the proper chemical, heat, or pressure conditions that will foster a certain chemical reaction. This requires understanding of substances' chemical properties, behavior under different conditions, and reaction mechanisms. For instance, if we want to oxidize an alkene into an alcohol, we would choose a reagent like Osmium Tetroxide (OsO4). In this case, OsO4 would be our 'best reagent', and room temperature may serve as the ideal condition as it generally facilitates this process. Each reagent and condition depend on the reactants you start with and the product you want at the end.
#SPJ6
A mixture of sand and table salt can be separated by filtration because the substances in the mixture differ in solubility in water. Thus, the correct option for this question is D.
Solubility may be defined as the phenomenon in chemistry that involves the maximum amount of a substance that will significantly be disbanded in a given amount of solvent at a particular temperature.
The answer to the above question is better understood by the fact that when you mix both salt and sand in the water, you may find that salt is completely soluble in water while sand is not. This is because the bond of water is not competent enough to dissolve the sand.
Therefore, the correct option for this question is D.
To learn more about Solubility, refer to the link:
#SPJ2
The concentration of gallium in kilograms per cubic meter is equal to the calculated mass of gallium per cubic meter.
To determine the concentration of gallium in kilograms per cubic meter, we need to convert the concentration from atomic percent (at%) to kilograms per cubic meter.
The atomic fraction is the ratio of the number of gallium atoms to the total number of atoms in the silicon-gallium mixture.
We need to know the atomic masses of gallium and silicon. The atomic mass of gallium is 69.72 g/mol, and the atomic mass of silicon is 28.09 g/mol.
The atomic fraction of gallium can be calculated using the formula:
Atomic fraction of gallium = (Concentration of gallium in at%) / (Atomic mass of gallium) / [(Concentration of gallium in at%) / (Atomic mass of gallium) + (Concentration of silicon in at%) / (Atomic mass of silicon)]
Plugging in the given values:
Atomic fraction of gallium = (%) / (69.72 g/mol) / [(at%) / (69.72 g/mol) + (100 - ) at% / (28.09 g/mol)]
Now, let's convert the atomic fraction to the number of gallium atoms per cubic meter. We can use Avogadro's number, to make this conversion.
Number of gallium atoms per cubic meter = Atomic fraction of gallium × Avogadro's number.
Mass of gallium per cubic meter = Number of gallium atoms per cubic meter × (Atomic mass of gallium / 1000)
Therefore, the concentration of gallium in kilograms per cubic meter is equal to the calculated mass of gallium per cubic meter.
Learn more about Concentration here;
#SPJ12
The concentration of gallium in kilograms per cubic meter can be calculated using the atomic mass of gallium and Avogadro's number.
To calculate the concentration of gallium in kilograms per cubic meter, we can use the atomic mass of gallium and Avogadro's number. The concentration in kilograms per cubic meter can be found using the formula:
Concentration (kg/m³) = Concentration (% by mass) x Density (g/cm³) x Atomic Mass (g/mol) / 1000 x Avogadro's Number
First, convert the concentration from at% (atomic percent) to % by mass. Since gallium has an atomic mass of 69.7 g/mol, we can use this value to find the concentration in kilograms per cubic meter.
#SPJ3