Write as ordinary number 3 x 10^0

Answers

Answer 1
Answer:

Answer:

3

Explanation:

10⁰ = 1 because anything to the power of 0 is 1.

3×1= 3


Related Questions

A block (0.50 kg) is attached to an ideal spring with a spring constant of 80 N/m, oscillating horizontally on a frictionless surface. The total mechanical energy is 0.12 J. (a) What is the greatest extension of the spring from its equilibrium length? (b) Now the block is traveling 2.00 m/s, and brought to rest by compressing a very long spring of spring constant 800.0 N/m. How much does the spring compress?
A spherical shell rolls without sliding along the floor. The ratio of its rotational kinetic energy (about an axis through its center of mass) to its translational kinetic energy is:
A golf pro swings a golf club, striking a golf ball that has a mass of 55.0 g. The club is in contact with the ball for only 0.00340 s. After the collision, the ball leaves the club at a speed of 46.0 m/s. What is the magnitude of the average force (in N) exerted on the ball by the club?
A stream of water emerging from a faucet narrows as fails. The cross-sectional area of the soutis As -6.40 cm. water comes out of the spout at a speed of 33.2 cm/s, and the waterfalls h = 7.05 cm before iting the bottom of sink What is the cross-sectional area of the water stream just before it is the sink? a. 0.162 cm3 b. 1.74 cm3c. 6.21cm3d. 0.943cm3
What was the main idea of Malthus theory of population

What power lens is needed to correct for farsightednesswherethe uncorrrected near point is 75 cm?

Answers

To solve this problem we will apply the concept related to the lens power with which farsightedness can be corrected. Mathematically this value is given by the relationship,

P = (1)/(f)

Here,

f =focal length

In turn, said expression can be exposed in terms of the distance of the object and the image as:

P = (1)/(p)+(1)/(q)

Here,

p = Object Distance ( By convention is 25cm)

q = Image distance

Replacing we have,

P = (1)/(0.25)+(1)/(-0.75)

P = +2.67D

Therefore the power lens that is needed to correct for farsightedness is +2.67D

A baseball player throws a ball into the stands at 15.0 m/s and at an angle 45.0° above the horizontal. On its way down, the ball is caught by a spectator 4.10 m above the point where the ball was thrown. How much time did it take for the ball to reach the fan in the stands?

Answers

Answer:

Time = 1.61 seconds

Explanation:

Using the equation displacement of a trajectory motion in the y plane

Y = u t sin ů - ½gt²....equation 1 where

Y= vertical displacement =4.1

U = initial velocity = 15m/s

g = acc. Due to gravity = 10m/s

Ů = angle of trajectory = 45

t = time to reach fan on its way down

Sub into equ 1

4.1 = 15t sinů - ½ * 10t²

4.1 = 10.61t - 5t²

Solve using quadratic formula

t =[-B±( -B² -4AC)^½]/2A....equation 2

Where A = 5, B=10.61, C =4.1

Substitute A,B,C into equ2

t = (10.61±5.53)/10

t = 0.508seconds or 1.61seconds

Since it is on its way down t= 1.61 seconds

A particular string resonates in four loops at a frequency of 320 Hz . Name at least three other (smaller) frequencies at which it will resonate. Express your answers using two significant figures separated by commas.

Answers

Answer:

160 Hz  ,  240 Hz  , 400 Hz

Explanation:

Given that

Frequency of forth harmonic is 320 Hz.

Lets take fundamental frequency = f₁

f_1=(320)/(4)\ Hz

f₁=80 Hz

Frequency of first harmonic = f₂

f₂=2 f₁

f₂ =2 x 80 = 160 Hz

Frequency of second harmonic = f₃

f₃= 3 f₁=3 x 80 = 240 Hz

Frequency of fifth harmonic = f₅

f₅=  5 f₁= 5 x 80 = 400 Hz

Three frequencies are as follows

160 Hz  ,  240 Hz  , 400 Hz

Final answer:

The resonant frequencies of a string depend on its length, tension, and linear mass density. For a string resonating in four loops at 320 Hz, three possible smaller frequencies could be 160 Hz, 106.7 Hz, and 80 Hz.

Explanation:

When a string resonates, it vibrates at certain frequencies called its resonant frequencies. The resonant frequencies of a string depend on factors such as its length, tension, and linear mass density. In this case, the string resonates in four loops at a frequency of 320 Hz.

Three other possible resonant frequencies at which the string could vibrate with smaller loops include:

  1. 160 Hz: This is half the frequency of the given resonant frequency, which means the string vibrates with twice the number of loops.
  2. 106.7 Hz: This is one third of the given resonant frequency, which means the string vibrates with three times the number of loops.
  3. 80 Hz: This is one fourth of the given resonant frequency, which means the string vibrates with four times the number of loops.

Learn more about Resonant frequencies here:

brainly.com/question/32273580

#SPJ3

Using energy considerations, calculate the average force (in N) a 62.0 kg sprinter exerts backward on the track to accelerate from 2.00 to 6.00 m/s in a distance of 25.0 m, if he encounters a headwind that exerts an average force of 30.0 N against him.

Answers

Answer:

69.68 N

Explanation:

Work done is equal to change in kinetic energy

W = ΔK = Kf - Ki = (1)/(2) mv^(2) _(f)  - (1)/(2) mv^(2) _(i)

W = F_(total) .d

where m = mass of the sprinter

vf = final velocity

vi = initial velocity

W  = workdone

kf = final kinetic energy

ki = initial kinetic energy

d = distance traveled

Ftotal = total force

vf = 8m/s

vi= 2m/s

d = 25m

m = 60kg

inserting parameters to get:

W = ΔK = Kf - Ki = (1)/(2) mv^(2) _(f)  - (1)/(2) mv^(2) _(i)

F_(total) .d =(1)/(2) mv^(2) _(f)  - (1)/(2) mv^(2) _(i)

F_(total) = ((1)/(2) mv^(2) _(f) - (1)/(2) mv^(2) _(i))/(d)

F_(total=) ((1)/(2) X 62 X6^(2) -(1)/(2) X 62 X2^(2) )/(25)

= 39.7

we know that the force the sprinter exerted F sprinter, the force of the headwind Fwind = 30N

F_(sprinter) = F_(total) + F_(wind)  = 39.7 + 30 = 69.68 N

Answer:

Force exerted by sprinter = 69.68 N

Explanation:

From work energy theorem, we know that, work done is equal to change in kinetic energy.

Thus,

W = ΔK = Kf - Ki = (1/2)m•(v_f)² - (1/2)m•(v_i)² - - - - eq(1)

Now,

Work done is also;

W = Force x Distance = F•d - - - (2)

From the question, we are given ;

v_f = 6 m/s

v_i = 2 m/s

d = 25m

m = 62 kg

Equating equation 1 and 2,we get;

(1/2)m•(v_f)² - (1/2)m•(v_i)² = F•d

Plugging in the relevant values to obtain ;

(1/2)(62)[(6)² - (2)²] = F x 25

31(36 - 4) = 25F

992 = 25F

F = 39.68 N

The force the sprinter exerts backward on the track will be the sum of this force and the headwind force.

Thus,

Force of sprinter = 39.68 + 30 = 69.68N

Why is there so much more carbon dioxide in the atmosphere of Venus than in that of Earth? Why so much more carbon dioxide than on Mars?

Answers

Explanation:

The reason for the more concentration of carbon dioxide in the atmosphere of Venus than in the Earth -

On the Earth , most amount of the carbon dioxide is in the ocean water and in sea sediments .

Considering Venus , in the planet Venus , there is no Ocean water , hence , carbon dioxide can not get dissolved into the water , hence , it is found in the atmosphere .

So , the escape velocity for carbon dioxide on Mars is smaller than Venus .

Consider two copper wires of equal cross-sectional area. One wire has 3 times the length of the other. How do the resistivities of these two wires compare?

Answers

Explanation:

The relation between resistance and resistivity is given by :

R=\rho (l)/(A)

\rho is resistivity of material

l is length of wire

A is area of cross section of wire

Resistivity of a material is the hidden property. If one wire has 3 times the length of the other, then it doesn't affect its resistivity. Hence, the resistivity of two wires is