Answer:
By measuring the total mass of the matter before as well as after any physical or chemical change.
Explanation:
As mentioned, according to the law of conservation of matter, no atoms can be created or destroyed when under physical or chemical change.
Naturally, all the matters have some mass associated with it.
To verify the law of conservation of matter, at first, measure the mass of matter before it underwent any physical or chemical change. Then, again, measure the mass of the matter after the physical or chemical change.
Now, observe both the mass, both must be equal. This verifies the law of conservation of matter.
B) hydrogen peroxide.
C) sulfuric acid.
D) methane.
Burning fossil fuels in a low oxygen environment most likely produces carbon monoxide due to incomplete combustion. This is because there isn't enough oxygen to react with carbon, leading to formation of carbon monoxide instead of carbon dioxide. The correct option is A.
When fossil fuels are burned in a low-oxygen environment, the most likely product will be carbon monoxide (A). This occurs because in a low-oxygen environment, there is not enough oxygen to react with the carbon atoms in the fossil fuels to form carbon dioxide, which is the normal product of combustion in a high-oxygen environment. Instead, each carbon atom reacts with only one oxygen atom, forming carbon monoxide instead of carbon dioxide. It's also important to note that the production of carbon monoxide in such situations is a significant health hazard as it is a poisonous gas.
#SPJ11
Answer:
Energy is absorbed, so the mass is reduced
Explanation:
The relationship between the mass and the energy is given by Einstein formula as : m is the mass of an atom c is the speed of light When an atom is formed, the energy gets absorbed. As a result mass will decrease as per Einstein's equation.
So, the correct option is (c) "Energy is absorbed, so the mass is reduced".
The mass of water that will be produced if 10.54 g of H₂ react with 95.10 g of O₂ is 94.86 g
2H₂ + O₂ —> 2H₂O
Molar mass of H₂ = 2 × 1 = 2 g/mol
Mass of H₂ from the balanced equation = 2 × 2 = 4 g
Molar mass of O₂ = 2 × 16 = 32 g/mol
Mass of O₂ from the balanced equation = 1 × 32 = 32 g
Molar mass of H₂O = (2×1) + 16 = 18 g/mol
Mass of H₂O from the balanced equation = 2 ×18 = 36 g
SUMMARY
From the balanced equation above,
4 g of H₂ reacted with 32 g of O₂ to produce 36 g of H₂O
How to determine the limiting reactant
From the balanced equation above,
4 g of H₂ reacted with 32 g of O₂
Therefore,
10.54 g of H₂ will react with = (10.54 × 32) / 4 = 84.32 g of O₂
From the calculation made above, we can see that only 84.32 g out of 95.10 g of O₂ given, is needed to react completely with 10.54 g of H₂.
Therefore, H₂ is the limiting reactant.
From the balanced equation above,
4 g of H₂ reacted to produce 36 g of H₂O
Therefore,
10.54 g of H₂ will react to produce = (10.54 × 36) / 4 = 94.86 g of H₂O
Thus, 94.86 g of H₂O were obtained from the reaction.
Learn more about stoichiometry: