The balanced chemical equation is :
Moles of ,
Now, by given chemical equation , we can see 2 mole of react with 1 mole of .
So , 2.27 mole react with :
Mass of oxygen is :
Therefore, mass of oxygen in grams produced is 18.16 g.
Hence, this is the required solution.
periodic poperties of elements in groups
and periods
atomic radius
ionization potential
which oneeeee
Answer: Yes the absorb in the visible range.
Explanation:
The relationship between wavelength and energy of the wave follows the equation:
where,
= energy of the wave = 182 kJ/mol = 182000 J/mol
N = avogadro's number =
h = plank constant =
c = speed of light =
= wavelength of the wave = ?
Putting all the values:
The wavelength range for visible rays is 400 nm to 750 nm, thus the complex absorb in the visible range.
The expected wavelength of the absorption in the [CrF6]3- complex cannot be calculated without knowing the exact value of ΔE. Therefore, it is unclear if the complex will absorb in the visible range.
In this complex, the value of delta (Δ) is 182 kJ/mol. To calculate the expected wavelength of the absorption corresponding to the promotion of an electron from the lower-energy orbital to the higher-energy orbital, we can use the equation: Wavelength = (hc)/(ΔE), where h is Planck's constant and c is the speed of light. By substituting the given values and dividing by Avogadro's number, we can calculate the expected wavelength.
However, the information given in the question does not provide the exact value for ΔE. Without this information, it is not possible to calculate the expected wavelength accurately. Therefore, we cannot determine if the complex will absorb in the visible range.
#SPJ3
B) NH3 and (NH4)2SO4
C) HNO3 and NaNO3
D) HF and NAF
E) HNO2 and NaNO2
Answer:
it is B
; )
Which one of the following combinations cannot function as a buffer solution?
A) HCN and KCN
B) NH3 and (NH4)2SO4
C) HNO3 and NaNO3
D) HF and NAF
E) HNO2 and NaNO2
b. acid (ionic compound)
c. covalent compound
d. ionic compound
Answer:
Covalent compound
Explanation:
It is formed by covalent bonds, in which the atoms share a pair of valence electrons
Answer:
6.1 kg
Explanation:
To obtain the total mass of the sample, we must first express each mass of the sample in the same unit of measurement.
Since the SI unit of mass is kilogram (kg), we shall express the total mass of the samples in kilogram (kg).
This is illustrated below:
Mass of the samples are:
M1 = 0.6160959 kg
M2 = 3.225 mg
M3 = 5480.7 g.
Conversion of 3.225 mg to kg
1 mg = 1×10¯⁶ kg
Therefore,
3.225 mg = 3.225 × 1×10¯⁶
3.225 mg = 3.225×10¯⁶ kg
Conversion of 5480.7 g to kg
1000 g = 1 kg
Therefore,
5480.7 g = 5480.7 /1000
5480.7 g = 5.4807 kg
Thus, we can obtain the total mass of the samples as follow:
M1 = 0.6160959 kg
M2 = 3.225×10¯⁶ kg
M3 = 5.4807 kg
Total mass =?
Total mass = M1 + M2 + M3
Total mass = 0.6160959 + 3.225×10¯⁶ + 5.4807
Total mass = 6.096799125 ≈ 6.1 kg
Therefore, the total mass of the samples is approximately 6.1 kg.