Answer and Explanation: Sample A is a mixture. Solubility is characteristics of each substance, which means a substance can be distinguished from other substances and can be useful to separate mixtures.
In Sample A, when is added different volumes of water, the resulting powder has different mass. This means there are more than one substance forming the yellow cube. Therefore, sample A is a mixture.
Sample B is a puresubstance. Each substance has its own melting point. Whe na pure substance reaches its melting point, temperature is constant until all of that substance is melted. In sample B, temperature is stable at 66.2°C and then, after all the powder is melted, it rises again. Therefore, sample B is a pure substance.
Sample A is a mixture based on the experiment result, while the nature of Sample B is inconclusive.
The result of the experiment with sample A indicates that it is a mixture. When the solid yellow cube is put into water, it collapses into a small pile of orange powder. The mass of the powder that is left over depends on the amount of water used. This suggests that the cube is composed of different substances that can be separated by filtration.
On the other hand, the result of the experiment with sample B is inconclusive, so we can't decide whether it is a pure substance or a mixture. Heating the coarse grey powder causes it to melt at a constant temperature, but there is a temperature increase after the last of the powder melts. This could indicate that the powder is a pure substance with a melting point range, or it could suggest the presence of impurities.
#SPJ3
Answer:
Diatomic Molecule
Explanation:
Answer:
A precipitation reaction refers to the formation of an insoluble salt when two solutions containing soluble salts are combined. The insoluble salt that falls out of solution is known as the precipitate, hence the reaction's name.
Explanation:
Answer:
Go ahead and plug in the percentages and time to find the answer.
Explanation:
The amount of a substance with half-life h, that remains after time t is 0.5t/h
Since 26% has decomposed, 74% remains.
So .74 = 0.580/h
ln .74 = (80/h) ln 0.5
h/80 = ln 0.5 / ln .74
h = 80 ln 0.5 / ln .74
h = 184.16 minutes
Answer:
Option 5 → 7.01 g
Explanation:
Molarity . volume (L) = Moles
This can help us to determine the moles of KOH that are in the solution.
We convert the volume from mL to L → 250 mL . 1L / 1000mL = 0.250 L
0.5 mol /L . 0.250L = 0.125 moles of KOH
Now, we only have to convert the moles to mass, by the molar mass:
Moles . molar mass = mass → 0.125 mol . 56.1 g/mol = 7.01 g
Answer:
We need 7.01 grams of KOH (option 5)
Explanation:
Step 1: Data given
Volume aqueous KOH solution = 250 mL = 0.250 L
Molarity = 0.500 M
Molar mass of KOH = 56.10 g/mol
Step 2: Calculate moles KOH
Moles KOH = molarity * volume
Moles KOH = 0.500 M * 0.250 L
Moles KOH = 0.125 moles
Step 3: Calculate mass of KOH
Mass KOH = moles KOH * molar mass KOH
Mass KOH = 0.125 moles * 56.10 g/mol
Mass KOH = 7.01 grams
We need 7.01 grams of KOH
Answer: The property which depends on the quantity of the substance is called an extensive property. The free energy change for a reaction (Δ G) depends on the quantity of the substance and is therefore an extensive property. It shows the additive nature. The extensive property Δ G is easily calculated from the formula, ΔG = -nFE cell.
Explanation:
An extensive property is one that changes when the size of the sample changes. One such property that can be calculated is enthalpy. Enthalpy can be calculated using the formula H = E + PV.
An extensive property is a property that changes when the size of the sample changes. Examples include mass, volume, length, and total charge. One extensive property that can be calculated is enthalpy.
The enthalpy of a system can be calculated using the formula H = E + PV, where H represents the enthalpy, E the internal energy of the system, P the pressure, and V the volume. Like other extensive properties, the enthalpy of a system would change with the quantity or size of the sample.
#SPJ3
Answer:
Kc = [B₃]²/[A₂]³ = 0.40
Explanation:
3A₂ ⇄ 2B₃
Given at equilibrium => [A₂] =2.5 and [B₃] = 2.5
Kc = [B₃]²/[A₂]³ = (2.5)²/(2.5)³ = (2.5)⁻¹ = 0.40