Answer:
[H₃O⁺] = 2.5 × 10⁻¹³ M
pH = 12.6
Explanation:
Step 1: Given data
Concentration of OH⁻: 0.04 M
Step 2: Calculate the concentration of H₃O⁺
Let's consider the self-ionization of water reaction.
2 H₂O(l) ⇄ OH⁻(aq) + H₃O⁺(aq)
The ionic product of water is:
Kw = [OH⁻] × [H₃O⁺] = 10⁻¹⁴
[H₃O⁺] = 10⁻¹⁴ / [OH⁻]
[H₃O⁺] = 10⁻¹⁴ / 0.04
[H₃O⁺] = 2.5 × 10⁻¹³ M
Step 3: Calculate the pH
The pH is:
pH = -log [H₃O⁺] = -log 2.5 × 10⁻¹³ = 12.6
Answer:
This question is incomplete
Explanation:
This question is incomplete. However, it should be noted that if the containers are compared with an equal average volume, the containers having solids will have larger masses than that containing liquid which will also have a larger mass than that containing gas. This is because solids have there molecules touching each other in compact manner which makes the molecule exert a certain combined force/mass. The molecules of liquid are also close to one another but are not compact like the solids and are hence exerting a lesser force/mass than solids. Gases have free molecules that are far apart and thus are usually the lightest when they occupy the same volume as liquids and solids.
B. Platinum does not react with oxygen at room temperature.
C. The page of the textbook is white.
D. The copper sheets that form the "skin" of the Statue of Liberty
have acquired a greenish coating over the years.
A chemical property is a characteristic observed during a reaction where the substance's chemical composition changes. In the provided options, 'Platinum does not react with oxygen at room temperature' and 'The copper sheets of the Statue of Liberty have acquired a greenish coating over the years' are chemical properties.
In Chemistry, a chemical property is a characteristic that is observed during a reaction in which the chemical composition or identity of the substance is changed. Taking a look at the options provided:
So, the correct answers are options B and D. Both entail a change or lack of change in the chemical identity of a substance.
#SPJ3
Answer: The net ionic equation for the given reaction is
Explanation:
Net ionic equation of any reaction does not include any spectator ions.
Spectator ions are the ions which do not get involved in a chemical equation. It is also defined as the ions that are found on both the sides of the chemical reaction when it is present in ionic form.
The chemical equation for the reaction of hydrochloric acid and potassium sulfite is given as:
Ionic form of the above equation follows:
As, potassium and chloride ions are present on both the sides of the reaction, thus, it will not be present in the net ionic equation.
The net ionic equation for the above reaction follows:
Hence, the net ionic equation for the given reaction is written above.
The net ionic equation for the reaction between hydrochloric acid and potassium sulfite is H+ (aq)+ SO3^2- (aq) → H+ (aq) + SO3^2- (aq), following the solubility trends of sulfates and sulfites under standard conditions.
The reaction between excess hydrochloric acid (HCl) and potassium sulfite (K2SO3) is a typical acid-base neutralization reaction. In the initial step, potassium sulfite dissociates into its ions in the aqueous solution:
K2SO3 (aq) → 2K+ (aq) + SO3^2- (aq)
Hydrochloric acid, being a strong acid, also dissociates completely:
HCl (aq) → H+ (aq) + Cl- (aq)
The hydrogen ion from the acid then reacts with the sulfite ion to form sulfuric acid and water, creating a net ionic equation :
2H+ (aq) + SO3^2- (aq) → H2SO3 (aq)
Because of the solubility trends of sulfates and sulfites under standard conditions, the sulfuric acid produced also dissociates into ions:
H2SO3 (aq) → 2H+ (aq) + SO3^2- (aq)
Therefore, the overall net ionic equation is:
H+ (aq)+ SO3^2- (aq) → H+ (aq) + SO3^2- (aq)
#SPJ3
O neutrons
O Neither... An atom isn't neutral!
Taking into account the constitution of an atom, an atom is neutral because it has the same number of protons as it has electrons.
An atom is the smallest constituent unit of ordinary matter that has the properties of a chemical element.
Every atom consists of a nucleus in which neutrons and protons meet and energy levels where electrons are located.
The neutron is an electrically neutral subatomic particle, while the proton has a positive electrical charge. Electrons have a negative charge, move around the nucleus at different energy levels and are attracted to protons, positive in the atom through electromagnetic force.
An atom is considered electrically neutral when it has the same number of positive and negative charges. That is, an electrically neutral atom has the same number of protons (with a positive charge) and electrons (with a negative charge).
In summary, an atom is neutral because it has the same number of protons as it has electrons.
Learn more about atomelectrically neutral:
#SPJ2
Answer:
A base pair is a pair of bases that form hydrogen bonds in the double stranded DNA molecule.
- Adenine-thymine: A-T
- Guanine-cytosine: G-C
Replication Process:
- Double strand unwinds.
- New nucleorides line up via base pairing.
- Colvalent bonds link nucleotides together in the new strands.
Explanation:
A reaction mixture initially contains a Br2 partial pressure of 751 torr and a Cl2 partial pressure of 737 torr at 150 K.
Calculate the equilibrium partial pressure of BrCl.
Answer:
the equilibrium partial pressure of BrCl is pBC = 784.52 torr
Explanation:
Since
Br₂(g) + Cl₂(g) ⇌ 2BrCl(g) , Kp=1.112 at 150 K
denoting BC as BrCl , B as Br₂ , C as Cl₂, p as partial pressure , then
Kp = pBC²/[pB*pC]
solving for pBC
pBC = √(Kp*pB*pC)
replacing values
pBC = √(Kp*pB*pC) = √(1.112*751 torr*737 torr) = 784.52 torr
pBC = 784.52 torr
then the equilibrium partial pressure of BrCl is pBC = 784.52 torr
To calculate the equilibrium partial pressure of BrCl, use the equilibrium constant expression and substitute the given partial pressures of Br2 and Cl2. The equilibrium partial pressure of BrCl is approximately 0.0375 atm.
To calculate the equilibrium partial pressure of BrCl, we need to use the equilibrium constant expression:
Kp = ([BrCl]^2) / ([Br2] * [Cl2])
Given that the equilibrium partial pressures of Br2 and Cl2 are 0.450 atm and 0.115 atm, respectively, we can substitute these values into the expression:
1.112 = ([BrCl]^2) / (0.450 * 0.115)
Simplifying the expression, we find that the equilibrium partial pressure of BrCl is approximately 0.0375 atm.
#SPJ12