Answer:
Corona
Explanation:
Is the answer so yeah...
B. 3.636 kPa
C. 854.46 kPa
D. 510 kPa
Answer : (C) 854.46 KPa.
Solution : Given,
Initial pressure = 400 KPa
Initial temperature = 110 K
Final temperature = 235 K
According to the Gay-Lussac's law, the absolute pressure is directly proportional to the absolute temperature at constant volume of an ideal gas.
P ∝ T
Formula used :
where,
= initial pressure
= final pressure
= initial temperature
= final temperature
Now put all the values in above formula, we get
By rearranging the terms, we get the value of new/final pressure.
= 854.5454 KPa 854.55 KPa
Answer:
False
Explanation:
This property depends on the intermolecular interactions of the analyzed compound.
In most cases, this property is fulfilled, but one of the most important exceptions is water since ice cubes float in liquid water which means that its density is lower than that of liquid water.
This is due to one of the types of bonds that binds hydrogen bonds to water molecules.
Hydrogen bridges are a molecular interaction that occurs between the hydrogen in one molecule of water and the oxygen in another molecule.
Recall the formula of the density
The volume is inversely proportional to the density this means that the lower the volume the higher the density and the higher the volume the lower the density.
This type of bonding means that when the freezes there is more space between the molecules, then they occupy a larger volume
Therefore, if we have the same mass in the liquid state and the solid-state, the molecules in the liquid state will be closer together occupying less volume (higher density) and the molecules that are in the solid-state occupy a greater volume (lower density)
Assume the CaCI2 dissolves completely in the water.. The density of water at 25.0°C is 0.997 g/L, and the KF of H20 is 1.858°C kg/mol.
Answer:
-4741 °C
Something is strange, because this is a weird number.
Explanation:
ΔT = Kf . m. i
That's the colligative property of freezing point depression.
Kf = Cyroscopic constant
m = molality (moles of solute in 1kg of solvent)
i = Van't Hoff factor (numbers of ions dissolved)
We assume 100% dissociation:
CaCl₂ → Ca²⁺ + 2Cl⁻ i = 3
ΔT = Freezing point of pure solvent - Freezing point of solution
Let's determine molality
Solute = CaCl₂
Moles of solute = 23.5 g . 1 mol/ 110.98 g = 0.212 moles
We determine the mass of solvent by density. Density's data is in g/L. We need to convert the volume from mL to L
250 mL . 1L / 1000 mL = 0.250 L
0.997 g/L = mass of water / volume of water → 0.997 g/L . volume of water = mass of water
0.997 g/L . 0.250L = 0.249 g
Now, we convert the mass of water from g to kg
0.249 g . 1 kg / 1000 g = 2.49×10⁻⁴ kg
Molality = mol/kg → 0.212 mol / 2.49×10⁻⁴ kg = 850.5 m
We replace data:
0°C - Freezing point of solution = 1.858 °C . kg /mol . 850.5 mol/kg . 3
Freezing point of solution = -4741 °C
Answer:
The freezing point of the solution is -4.74 °C
Explanation:
Step 1: data given
Mass of calcium chloride CaCl2 = 23.50 grams
Step 2: Calculate moles CaCl2
Moles CaCl2 = mass CaCl2 / molar mass CaCl2
Moles CaCl2 = 23.50 grams / 110.98 g/mol
Moles CaCl2 = 0.212 moles
Step 3: Calculate mass H2O
Density = mass / volume
Mass = density * volume
Mass H2O = 997 g/L * 0.250 L
MAss H2O = 249.25 grams
Step 3: calculate molality of the solution
Molality = moles CaCl2 / mass H2O
Molality = 0.212 moles / 0.24925 kg
Molality = 0.851 molal
ΔT = i*Kf*m
⇒with ΔT = the freezing point depression = TO BE DETERMNED
⇒ with i = the van't Hoff factor = 3
⇒with Kf = the freezing point depression constant of water = 1.858 °C /m
⇒with m = the molality = moles CaCl2 / mass water = 0.851 molal
ΔT = 3 * 1.858 * 0.851
ΔT = 4.74 °C
Step 4: Calculate the freezing point of the solution
ΔT = T (pure solvent) − T (solution)
ΔT = 0°C - 4.74 °C
The freezing point of the solution is -4.74 °C
NOTE: the density of water = 0.997 kg/L or 997 g/L
Particulate matter
Contaminated groundwater
Carbon monoxide
Carbon monoxide is an air pollutant that can contribute to asthma. Therefore, option D is correct.
Carbon monoxide (CO) is a colorless and odorless gas produced by the incomplete combustion of fossilfuels, such as gasoline, coal, and wood. It is primarily emitted by vehicles, industrial processes, and the burning of biomass.
When inhaled, carbon monoxide reduces the blood's ability to carry oxygen, leading to oxygen deprivation in the body. Prolonged exposure to carbon monoxide can worsen asthma symptoms and potentially trigger asthma attacks.
To learn more about air pollutants, follow the link:
#SPJ6
Arrhenius acids are substances which produces hydrogen ions in solution, Arrhenius bases are substances which produces hydroxide ions in solution. A Bronsted-Lowry acid is a proton donor (usually hydrogen ion). And a Bronsted-Lowry base is a proton acceptor (usually hydrogen ion). Consider a chemical reaction between HCl and NaOH. We have the reaction HCl + NaOH à NaCl + H2O. The hydroxide ions in the NaOH are bases because they accept hydrogen ions from acids to form water. And an acid produces hydrogen ions in solution by giving a proton to the water molecule. Therefore, the answer is d. a Bronsted-Lowry base.