Answer:
Decrease to typical from utilizing lambda-decrease:
The given lambda - math terms is, (λf.λx.f(f(fx)))(λy.y×3)2
The of taking the terms is significant in lambda - math,
For the term, (λy, y×3)2, we can substitute the incentive to the capacity.
Therefore apply beta-decrease on “(λy, y×3)2,“ will return 2 × 3 = 6
Presently the tem becomes, (λf λx f(f(fx)))6
The main term, (λf λx f(f(fx))) takes a capacity and a contention and substitute the contention in the capacity.
Here it is given that it is conceivable to substitute, the subsequent increase in the outcome.
In this way by applying next level beta - decrease, the term becomes f(f(f(6))), which is in ordinary structure.
Answer: Tl = - 13.3°C
the lowest outdoor temperature is - 13.3°C
Explanation:
Given that;
Temperature of Th = 21°C = 21 + 273 = 294 K
the rate at which heat lost is Qh = 5400 kJ/h°C
the power input to heat pump Wnet = 6 kw
The COP of a reversible heat pump depends on the temperature limits in the cycle only, and is determined by;
COPhp = Th/(Th - Tl)
COPhp = Qh/Wnet
Qh/Wnet = Th/(Th -Tl)
the amount of heat loss is expressed as
Qh = 5400/3600(294 - Tl)
the temperature of sink
( 5400/3600(294 - Tl)) / 6 = 294 / ( 294 - Tl)
now solving the equation
Tl = 259.7 - 273
Tl = - 13.3°C
so the lowest outdoor temperature is - 13.3°C
Answer:
Given:
operating temperature of heat engine,
Solution:
For a reversible cycle, maximum efficiency, is given by:
Now, on re designing collector, maximum temperature, changes to
, so, the new maximum efficiency,
is given by:
b. The contract specifications require an average asphalt content of 5.5% +/- 0.5% every day. Plot the daily average asphalt content. Show upper and lower control limits.
c. Do all of these samples meet the contract specifications? Explain your answer.
d. What trend do you observe based on the data? What could cause this trend?"
Answer:
hello your question is incomplete attached below is the complete question
A) overall mean = 5.535, standard deviation ≈ 0.3239
B ) upper limit = 5.85, lower limit = 5.0
C) Not all the samples meet the contract specifications
D) fluctuation ( unstable Asphalt content )
Explanation:
B) The daily average asphalt content has to obtained in order to determine the upper and lower control limits using an average asphalt content of 5.5% +/- 0.5% everyday
The upper limit : 14 may = ( 5.8 + 5.1 ) / 2 = 5.85
The lower limit : 16 may = ( 5.2 + 4.8 ) / 2 = 5.0
attached below is the required plot
C ) Not all the samples meet the contract specifications and the samples that do not meet up are samples from :
15 may and 16 may . this is because their Asphalt contents are 6.2 and 4.8 respectively and sample number 18 and 20
D ) what can be observed is that the ASPHALT content fluctuates between the dates while the contract specification is fixed
Answer:
Digital electronics deals with the discrete-valued digital signals. In general, any electronic system based on the digital logic uses binary notation (zeros and ones) to represent the states of the variables involved in it. Thus, Boolean algebraic simplification is an integral part of the design and analysis of a digital electronic system.
Explanation:
Hi please follow me also I you can and thanks for the points. Have a good day.
Answer:
b) 70°C
Explanation:
Given that super heat temperature at 101.325 KPa= 170°C.
We know that saturation temperature at 101.325 KPa is 100°C.
So
Degree of super heat =Super heat temperature - saturation temperature ( at constant pressure)
Now by putting the values
Degree of super heat=170-100
Degree of super heat=70°C.
So our option b is right.
vehicles are abreast of each other, the police car starts to pursue the automobile at
a constant acceleration of 1.96 m/s². The motorist noticed the police car in his rear
view mirror 12 s after the police car started the pursuit and applied his brakes and decelerates at 3.05 m/s². (Hint: The police will not go against the law.)
a) Find the total time required for the police car to overtake the automobile.
b) Find the total distance travelled by the police car while overtaking the
automobile.
c) Find the speed of the police car at the time it overtakes the automobile.
d) Find the speed of the automobile at the time it was overtaken by the police car.
Answer:
a.) Time = 17.13 seconds
b.) 31.88 m
c.) V = 11.18 m/s
d.) V = 7.1 m/s
Explanation:
The initial velocity U of the automobile is 15.65 m/s.
At the instant that the two vehicles are abreast of each other, the police car starts to pursue the automobile with initial velocity U = 0 at a constant acceleration of 1.96 m/s². Because the police is starting from rest.
For the automobile, let us use first equation of motion
V = U - at.
Acceleration a is negative since it is decelerating with a = 3.05 m/s² . And
V = 0.
Substitute U and a into the formula
0 = 15.65 - 3.05t
15.65 = 3.05t
t = 15.65/3.05
t = 5.13 seconds
But the motorist noticed the police car in his rear view mirror 12 s after the police car started the pursuit and applied his brakes and decelerates at 3.05 m/s².
The total time required for the police car to overtake the automobile will be
12 + 5.13 = 17.13 seconds.
b.) Using the third equation of motion formula for the police car at V = 11.18 m/s and a = 1.96 m/s²
V^2 = U^2 + 2aS
Where S = distance travelled.
Substitute V and a into the formula
11.18^2 = 0 + 2 × 1.96 ×S
124.99 = 3.92S
S = 124.99/3.92
S = 31.88 m
c.) The speed of the police car at the time it overtakes the automobile will be in line with the speed zone which is 11.18 m/s
d.) That will be the final velocity V of the automobile car.
We will use third equation of motion to solve that.
V^2 = U^2 + 2as
V^2 = 15.65^2 - 2 × 3.05 × 31.88
V^2 = 244.9225 - 194.468
V = sqrt( 50.4545)
V = 7.1 m/s