Answer:
-115°C is the temperature on planet X.
Explanation:
Pressure inside the space station =
1 atm = 760 mmHg
Temperature inside the space station =
Volume of the air filled in the balloon =
1 mL = 0.001 L
Atmospheric pressure on planet X =
Temperature on the planet X =
Volume of the air filled in the balloon on planet X =
Using combined gas equation :
-115°C is the temperature on planet X.
Using the ideal gas law, the temperature on planet X is calculated to be approximately -148.5 °C, after converting all units to standard and then adjusting the final result from Kelvin to Celsius.
This is a classic problem in physics that uses the ideal gas law, which states that the pressure of a gas multiplied by its volume is directly proportional to the amount of gas and the temperature. Using the provided data about the initial conditions inside the space station and the final conditions on planet X, the final temperature can be found by using the equation P1V1/T1 = P2V2/T2, where P refers to pressure, V refers to volume, and T refers to temperature.
First, we need to convert all measurements to the standard units: Pressure in atm and volume in liters. So, initially the pressure inside the space station is 761 mmHg or approximately 1 atm (since 1 atm = 760 mmHg), the volume of the balloon is 855 mL or 0.855 L, and the temperature is 27 °C or 300.15 K (since 0 °C = 273.15 K). On planet X, the pressure is given as 0.14 atm and the volume as 3.21 L.
Substituting these values into our ideal gas law equation, we can find the final temperature T2 on planet X: T2 = P2V2T1 / P1V1 = (0.14 atm * 3.21 L * 300.15 K) / (1 atm * 0.855 L) = approximately 124.68 K.
To convert this value from Kelvin to degrees Celsius, we subtract 273.15, getting approximately -148.47 °C.
Therefore, the temperature on planet X is approximately -148.5 °C, given to three significant figures.
#SPJ3
Explanation:
It is known that number of moles equal mass divided by molar mass.
Mathematically, Number of moles =
Since, it is given that mass is 22 grams and molar mass of argon is 40 g/mol.
Therefore, Number of moles =
=
= 0.55 mol
Thus, we can conclude that there are 0.55 moles in 22 grams of argon.
The complete question is attached in the attachment.
Out of the given options, Selenium is the one which is most brittle element.
As selenium is a metalloid or a crystalline non metal which is lustrous and is ductile in nature and is highly brittle in nature.
Selenium is the most brittle out of all the other elements
(2) 2 days (4) 4 days
Unstable heavy atoms will undergo radioactive decay to produce stable species. The half life time of the isotope which undergone a decay of 75 mg in 32 days is 18 days.
The half life time of a radioactive sample is the time taken to reduce it to half of the initial amount by decay.
The heavy unstable material have very short half life and they will easily undergoes radioactive decay by emitting certain radiation.
Radioactive decay is a firs order reaction and have the equation to find the radioactive constant as follows:
Where, t is the time of decay and Ni and Nt be the initial and final amount respectively.
It is given that 5 mg is remaining out of 80 mg after 32 days. Thus the radioactive constant is calculated as follows:
Now the half life time of the decay is calculated as below:
t(1/2) = 0.693 /decay constant
= 0.693/0.0376
= 18 days
Therefore, the half life time of the isotope which undergone a decay of 75 mg in 32 days is 18 days.
To find more about radioactive decay, refer the link below:
#SPJ5