Answer:
Chromosome
Explanation:
We inherit our genes from our parents, which we share 24 chromosomes from both of our parents. XX is female , and XY is male.
Answer:
B. Chromosome
Explanation:
Genes are contained in the Chromosome. A Chromosome contains hundreds of thousands of genes.
Answer:
In of cobalt atoms there are mol Co
Explanation:
Step 1 : Identify the relationship between 1 mole Cobalt and Avogadro's number of atoms.
Avogadro’s number is number of units present in one mole of any substance (defined as its molecular weight in grams)
Step 2: Divide the given atoms of cobalt by the number of atoms per mol.
Given atoms of cobalt is
Now by performing division
Number of moles of cobalt (Co) atoms in cobalt atoms is
=
=
=
=
Grams are the unit of the mass that is used to calculate the moles. From 37.5 gms of iron, 53.6 gms of ferric oxide are produced.
Mass is the measurement of the moles of the substance and the molar mass.
Moles of iron from the mass is calculated as:
Moles of iron = 37.5 gms ÷ 55.84 = 0.671 moles
The balanced chemical reaction:
4Fe + 3O2 → 2Fe2O3
From the above it is deduced that 4 moles of iron produce 2 moles of ferric oxide so, 0.671 moles of iron will produce,
(0.671 × 2) ÷ 4 = 0.3375 moles
Mass of ferric oxide, from moles, is calculated as:
Mass = 0.33 moles × 159.687
= 52.696 gms
Therefore, 53.6 gms of ferric oxide will be produced from 37.5 gms of iron.
Learn more about mass here:
#SPJ5
The mass of Fe2O3 that can be produced from 37.5g of iron (Fe) is approximately 53.65g. This is achieved by converting mass of iron to moles, using stoichiometry from the balanced chemical equation to convert moles of iron to moles of Fe2O3, and then converting moles of Fe2O3 back to grams.
First, we need to figure out the molar mass of iron (Fe) which is approximately 55.85 g/mol and the molar mass of iron(III) oxide (Fe2O3) which is approximately 159.69 g/mol. We find this using the atomic masses of Iron (Fe) and Oxygen (O) from the periodic table and add them appropriately.
Next, to find the number of moles of iron we use the provided mass of Fe and its molar mass. We calculate this as (37.5 g Fe / 55.85 g/mol Fe) = 0.671 moles of Fe. Now, the balanced chemical equation for the formation of iron(III) oxide is: 4Fe + 3O2 --> 2Fe2O3. From this balanced equation, we know that it takes 4 moles of iron (Fe) to produce 2 moles of Fe2O3. Therefore, the moles of Fe2O3 formed from 0.671 moles of Fe would be (0.671 moles Fe * 2 moles Fe2O3/4 moles Fe) = 0.336 moles of Fe2O3.
Finally, to find the mass of Fe2O3 produced, we multiply the moles of Fe2O3 by its molar mass. We calculate this as (0.336 moles Fe2O3 * 159.69 g/mol Fe2O3) = 53.657 g of Fe2O3.
#SPJ3
Double Replacement Reaction