Answer:
0.051
Explanation:
Let's consider the following reaction.
2 SO₂(g) + O₂(g) ⇄ 2 SO₃(g)
We can compute the pressures using an ICE chart.
2 SO₂(g) + O₂(g) ⇄ 2 SO₃(g)
I 3.3 0.79 0
C -2x -x +2x
E 3.3-2x 0.79-x 2x
The partial pressure of sulfur trioxide gas is 0.47 atm. Then,
2x = 0.47
x = 0.24
The pressures at equilibrium are:
pSO₂ = 3.3-2x = 3.3-2(0.24) = 2.82 atm
pO₂ = 0.79-x = 0.79-0.24 = 0.55 atm
pSO₃ = 0.47 atm
The pressure equilibrium constant (Kp) is:
Kp = pSO₃² / pSO₂² × pO₂
Kp = 0.47² / 2.82² × 0.55
Kp = 0.051
Answer: A solid is something that can hold its own shape and is hard to compress (squash). However, ice is different from most solids because its molecules are less densely packed than in liquid water so ice takes up a little more space than the same amount of liquid water. This is why ice floats.
Explanation: Hope it works!!!!!
Answer:
Based on the given reaction, it is evident that the reaction is endothermic as indicated by a positive sign of enthalpy of reaction. Thus, it can be stated that the favoring of the forward reaction will take place by upsurging the temperature of the reaction mixture.
Apart from this, based on Le Chatelier’s principle, any modification in the quantity of any species is performed at equilibrium and the reaction will move in such an orientation so that the effect of the change gets minimized. Therefore, a slight enhancement in the concentration of the reactant will accelerate the reaction in the forward direction and hence more formation of the product takes place.
Answer : The value of 'x' for this expression is, 5.59
Explanation :
The given expression is:
Now we have to determine the value of 'x' by solving the above expression.
Thus, the value of 'x' for this expression is, 5.59
How many grams in one mole of B2?
__g
The number of grams in one mole of B2 can be calculated using the atomic mass of element B. This is found on the periodic table and then doubled for B2 since it's diatomic. If B is Oxygen for instance, 1 mole of B2 (O2) weighs 32 grams.
To find the number of grams in one mole of B2, we need to know the atomic mass of element B, which isn't provided in your question. However, you can find this information on the periodic table. Once you have the atomic mass of B, you can calculate the molar mass of B2 (which is two times the atomic mass of B) since 1 mole of a substance corresponds to its molar mass in grams.
For example, if element B is Oxygen (O), its atomic mass is approximately 16 g/mol. Therefore, the molar mass of B2 (O2 in this case) would be 32 g/mol. Hence, 1 mole of B2 (or O2) would weigh 32 grams.
#SPJ12
___2.Variables
___3.Conclusion
___4.Scientific Method
___5.Procedure
a.The steps you take to complete the experiment
b.Factors that changes in an experiment
c.A possible solution to a problem
d.The result of the experiment
e.The process scientist follow to complete an investigation
Answer:
1. d
2. b
3. d
4. e
5. a
explanation:
there's nothing else to explain