Answer:
C
Explanation:
Boolean Algebra deals with either a one or a zero and how to manipulate them in computers or elsewhere. The "choice" option may not work, since for text it must be enclosed in quotation marks, usually. For "again," it's text and not a 1 or 0. So, the answer is C, since this is a 0.
Answer:
0.1 nm
Explanation:
Potential difference of the electron = 150 V
Mass of electron
Charge on electron
Plank's constant
If the velocity of the electron is v
Then according to energy conservation
According to De Broglie
Answer: Fossil remains of the same land-dwelling animal.
Explanation: Fossil remains which were found to belong to same land dwelling animals, in South America and Africa was used as evidence to help support the theory of Tectonics plates, what this theory simply means is that the whole continents of earth were once fused together until a tectonic plate caused it’s division. Since same remains were found in Africa and South America this shows that both continents were once fused together.
Answer:
Fossil remains of the same land-dwelling animal
Explanation:
Fossil remains tell us where the animals once lived and how by the movement of plate spearated their remaind that was burried thousands of years ago.
b. the back work ratio
c. the net power developed, in kW
d. the rates of exergy destruction in each compressor stage and the turbine stage as well as the regenerator, in kW, for T 0 = 300 K.
Answer:
a. = 77.65%
b. bwr = 6.5%
c. 3538.986 kW
d. -163.169 kJ
Explanation:
a. The given property are;
P₂/P₁ = 10, P₂ = 10 * 100 kPa = 1000 kPa
p₄/p₁ = 10
P₂/P₁ = p₄/p₃ = √10
p₂ = 100·√10
= T₁×(√10)^(0.4/1.4) = 300 × (√10)^(0.4/1.4) = 416.85 K
T₂ = T₁ + ( - T₁)/
= 300 + (416.85 - 300)/0.8 = 446.0625 K
p₄ = 10×p₁ = 10×100 = 1000 kPa
p₄/p₃ = √10 =
p₃ = 100·√10
T₃ = 300 K
T₃/ = (P₂/P₁)^((k - 1)/k) = (√10)^(0.4/1.4)
= T₃/((√10)^(0.4/1.4) ) = 300/((√10)^(0.4/1.4)) = 215.905 K
T₄ = T₃ + ( - T₃)/
= 300 + (215.905- 300)/0.8 = 194.881 K
The efficiency = 1 - (T₄ - T₁)/(T₃ - T₂) = 1 - (194.881 -300)/(300 -446.0625 ) = 0.28
T₄ = 446.0625 K
T₆ = 1400 K
/T₆ = (1/√10)^(0.4/1.4)
= 1400×(1/√10)^(0.4/1.4) = 1007.6 K
T₇ = T₆ - (T₆ -
) = 1400 - 0.8*(1400 - 1007.6) = 1086.08 K
T₈ = 1400 K
T₉ = 1086.08 K
T₅ = T₄ + (T₉ - T₄) = 446.0625 +0.8*(1086.08 - 446.0625) = 958.0765 K
=(((T₆ - T₇) + (T₈ - T₉)) -((T₂ - T₁) + (T₄ - T₃)))/((T₆ - T₅) + (T₈ - T₇))
(((1400 - 1086.08) + (1400 -1086.08 ))-((446.0625 - 300)+(194.881 - 300)))/((1400 -958.0765 ) + (1400 -1086.08 )) = 0.7765
= 77.65%
b. Back work ratio, bwr =
((446.0625 - 300)+(194.881 - 300))/((1400 - 1086.08) + (1400 -1086.08 ))
40.9435/627.84 = 6.5%
c.
Power developed is given by the relation;
= 6*1.005*(((1400 - 1086.08) + (1400 -1086.08 ))-((446.0625 - 300)+(194.881 - 300))) = 3538.986 kW
d. Exergy destruction = 6*(1.005*(300-446.0625 ) - 300*1.005*(-0.3966766)
-163.169 kJ
The annual quantity of welded assemblies that would have to be produced to reach the break-even point for the two methods is approximately 15,983.
To determine the break-even point between the manual arc welding cell and the robotic cell, we need to calculate the total costs for each method and then equate them.
For the manual arc welding cell:
Labor cost per hour = (welder's hourly rate x arc-on time) + (fitter's hourly rate x fitter's participation in the cycle) = ($30 x 0.25) + ($25 x 0.3) = $11.25
Labor cost per welded assembly = labor cost per hour x cycle time per assembly / 60 = $11.25 x 15.4 / 60 = $2.89
Overhead cost per welded assembly = (labor cost per hour x (1 - arc-on time - fitter's participation in the cycle)) x cycle time per assembly / 60 = ($30 x 0.45) x 15.4 / 60 = $4.68
Total cost per welded assembly = labor cost per welded assembly + overhead cost per welded assembly = $2.89 + $4.68 = $7.57
Total cost per hour = total cost per welded assembly x production rate = $7.57 x 8 = $60.56
Total cost per year = total cost per hour x hours of operation per year = $60.56 x 2,000 = $121,120
For the robotic arc welding cell:
Labor cost per hour = fitter's hourly rate x fitter's participation in the cycle = $25 x 0.62 = $15.50
Labor cost per welded assembly = labor cost per hour x cycle time per assembly / 60 = $15.50 x 15.4 / 60 = $3.97
Overhead cost per welded assembly = power and utility cost per hour + annual maintenance cost / production rate = $3.80 + $3,500 / (8 x 2,000) = $3.80 + $0.22 = $4.02
Total cost per welded assembly = labor cost per welded assembly + overhead cost per welded assembly + (installed cost / (production rate x service life)) = $3.97 + $4.02 + ($158,000 / (8 x 3)) = $3.97 + $4.02 + $6,208.33 = $14.19
Total cost per hour = total cost per welded assembly x production rate = $14.19 x 8 = $113.52
Total cost per year = total cost per hour x hours of operation per year = $113.52 x 2,000 = $227,040
To find the break-even point, we set the total cost of the manual arc welding cell equal to the total cost of the robotic arc welding cell and solve for the annualquantity of welded assemblies:
$121,120 + x($7.57) = $227,040 + x($14.19)
$7.57x - $14.19x = $227,040 - $121,120
$-6.62x = $105,920
x = $105,920 / $6.62
x = 15,982.7
Therefore, the annualquantity of welded assemblies that would have to be produced to reach the break-even point for the two methods is approximately 15,983.
Learn more about hourly rate here brainly.com/question/29335545
#SPJ4
Answer:
(a) ΔU = 125 kJ
(b) ΔU = -110 kJ
Explanation:
(a) Suppose that 150 kJ of work are used to compress a spring, and that 25 kJ of heat are given off by the spring during this compression. What is the change in internal energy of the spring during the process?
The work is done to the system so w = 150 kJ.
The heat is released by the system so q = -25 kJ.
The change in internal energy (ΔU) is:
ΔU = q + w
ΔU = -25 kJ + 150 kJ = 125 kJ
(b) Suppose that 100 kJ of work is done by a motor, but it also gives off 10 kJ of heat while carrying out this work. What is the change in internal energy of the motor during the process?
The work is done by the system so w = -100 kJ.
The heat is released by the system so q = -10 kJ.
The change in internal energy (ΔU) is:
ΔU = q + w
ΔU = -10 kJ - 100 kJ = -110 kJ
nononononnononononononnonononononononononnonononononnononononononnonononononononononnonononononnononononononnonononononononononnonononononnononononononnonononononononononnonononononnononononononnonononononononononnonononononnononononononnonononononononononnonononononnononononononnonononononononononnonononononnononononononnonononononononononnonononononnononononononnonononononononononnonononononnononononononnonononononononononnonononononnononononononnonononononononononnonononononnononononononnonononononononononnonononononnononononononnonononononononononnonononononnononononononnonononononononononnonononononnononononononnonononononononononnonononononnononononononnonononononononononnonononononnononononononnonononononononononnonononononnononononononnonononononononononnonononononnononononononnonononononononononnonononononnononononononnonononononononononno